شما در حال مطالعه نسخه آفلاین یکی از مطالب «مجله فرادرس» هستید. لطفاً توجه داشته باشید، ممکن است برخی از قابلیتهای تعاملی مطالب، مانند امکان پاسخ به پرسشهای چهار گزینهای و مشاهده جواب صحیح آنها، نمایش نتیجه آزمونها، پاسخ تشریحی سوالات، پخش فایلهای صوتی و تصویری و غیره، در این نسخه در دسترس نباشند. برای دسترسی به نسخه آنلاین مطلب، استفاده از کلیه امکانات آن و داشتن تجربه کاربری بهتر اینجا کلیک کنید.
در این آموزش با انتگرال بیضوی (Elliptic Integral) و انتگرالهای بیضوی لژاندر، توابع تتا و توابع بیضوی ژاکوبی آشنا میشویم. این انتگرالها و توابع بیضوی در نظریه اعداد، جبر، هندسه، معادلات دیفرانسیل معمولی و جزئیخطی و غیرخطی، دینامیک، مکانیک، الکترواستاتیک، رسانش و نظریه میدانها کاربرد دارند.
اولین مطالعات در زمینه انتگرالهای بیضوی در سال 1655 منتشر شد که در آن هنگام، «جان والیس» (John Wallis) طول قوس یک بیضی را بررسی کرد. جان والیس و «آیزاک نیوتن» (Isaac Newton)، هر دو، یک بسط سری بینهایت برای طول قوس بیضی ارائه کردند. اما در اواخر سال 1700 بود که لژاندر از توابع بیضوی برای مسائلی مانند حرکت یک آونگ ساده و تغییر شکل یک نوار الاستیک نازک استفاده کرد. این مسائل را میتوان با توابع ساده تعریف کرد.
«آدریان-ماری لژاندر» (Adrien-Marie Legendre)، ریاضیدان فرانسوی، که برای نماد لژاندر و توابع لژاندر معروف است، بیش از چهل سال از زندگی خود را صرف کار بر روی توابع بیضوی، از جمله دستهبندی انتگرالهای بیضوی کرد. اولین نوشتههای منتشر شده او در مورد انتگرالهای بیضوی شامل دو مقاله در Memoires de l’Acadmie Francaise در سال 1786 برای قوس بیضوی است.
کار اصلی لژاندر روی توابع بیضوی در سه مجلد در سالهای ۱۸۱۱ تا ۱۸۱۶ منتشر شد. در جلد اول، لژاندر ویژگیهای اساسی انتگرالهای بیضوی و توابع بتا و گاما را معرفی کرد. نتایج بیشتر در مورد توابع بتا و گاما و کاربردهای آنها در مکانیک، گردش زمین، جذب بیضیها و سایر مسائل در جلد دوم منتشر شد. جلد سوم شامل همان جدولهای مفصلی بود که امروزه به نام جداول انتگرالهای بیضوی شناخته میشوند و لژاندر خودش آنها را محاسبه کرده بود. او در ادامه، دوباره در سه مجلد، در سالهای ۱۸۲۵ تا ۱۸۳۰ کارهایش را تکرار کرد.
علیرغم آنکه لژاندر چهل سال از عمر خود را صرف مطالعه توابع بیضوی کرد، کارهای او اساساً تا سال ۱۸۲۷ مورد توجه عمعصرانش قرار نگرفت. در این سال، دو دانشمند جوان و ناشناخته به نام «نیلس هنریک آبل» (Niels Henrik Abel) و «کارل گوستاو ژاکوب ژاکوبی» (Carl Gustav Jacob Jacobi) موضوع را بر مبنای جدیدی قرار دادند و آن را متحول کردند.
در سال ۱۸۲۵، دولت نروژ به آبل یک کمکهزینه تحقیقاتی برای سفر به فرانسه و آلمان اعطا کرد. آبل به پاریس رفت و در آنجا مقاله مهمی را درباره تناوب مضاعف توابع بیضوی ارائه کرد. آبل در کنار سایر کارهای مهمش، کار مهمی را در زمینه توابع بیضوی انجام داد که متأسفانه تا بعد از مرگش کشف نشد.
ژاکوبی یک مقاله کلاسیک در مورد اهمیت توابع بیضوی در فیزیک ریاضی به دلیل لزوم انتگرالگیری از معادلات انرژی جنبشی مرتبه دوم نوشت. بر این اساس، معادلات حرکت به فرم چرخشی فقط برای سه مورد آونگ، قله متقارن در یک میدان گرانشی و یک جسم-فنر آزاد انتگرالپذیر هستند که جوابها برحسب توابع بیضوی ارائه میشوند.
ژاکوبی اولین ریاضیدانی بود که توابع بیضوی را در نظریه اعداد، برای مثال، اثبات قضیه اعداد چندضلعی فرما (Fermat Polygonal Number Theorem) به کار برد. توابع تتای ژاکوبی نیز در مطالعه سریهای فوقهندسی، بسیار مورد استفاده قرار گرفتهاند.
که در آن، A(x)، B(x)، C(x) و D(x) عبارتهای جبری برحسب x هستند و S(x) یک چندجملهای مرتبه سه یا چهار است. در ادامه، انتگرالهای بیضوی نوع اول و دوم را معرفی میکنیم.
انتگرال بیضوی نوع اول
فرض میکنیم ضریب k در 0≤k2<1 صدق میکند (این موضوع گاهی برحسب پارامتر m=k2 یا ضریب زاویهای α≡sin−1k نوشته میشود). «انتگرال بیضوی ناقص نوع اول» (Incomplete Elliptic Integral of the First Kind) به صورت زیر نوشته میشود:
اگر t=sinθ و dt=cosθdθ=1−t2dθ را در نظر بگیریم، خواهیم داشت:
F(ϕ,k)=∫0ϕ1−k2sin2θdθ,0≤k2≤1, 0≤ϕ≤π/2
انتگرال اخیر، به عنوان «انتگرال بیضوی لژاندر ناقص» (Incomplete Legendre Elliptic Integral) شناخته میشود. انتگرال بیضوی کامل را میتوان با قرار دادن حداکثر مقدار بازه در کران بالای انتگرال، یعنی sinϕ=1 یا ϕ=π/2، به دست آورد:
K(k)=∫01(1−t2)(1−k2t2)dt=∫0π/21−k2sin2θdθ
انتگرال بیضوی نوع دوم
انتگرال بیضوی نوع دوم به فرم زیر است:
E(ϕ,k)=∫0sinϕ1−t21−k2t2dt=∫0ϕ1−k2sin2θdθ
به طور مشابه، انتگرال بیضوی کامل را میتوان با برابر قرار دادن کران بالای انتگرال با حداکثر مقدار آن به دست آورد:
E(k)=∫011−t21−k2t2dt=∫0π/21−k2sin2tdt
یک دسته بسیار مفید دیگر از توابع را میتوان با معکوس کردن انتگرالهای بیضوی به دست آورد. به عنوان مثال، تابع بیضوی ژاکوبی sn را میتوان از عبارت زیر به دست آورد:
u(x=sinϕ,k)=F(ϕ,k)=∫0sinϕ(1−t2)(1−k2t2)dt
اگر بخواهیم معکوس انتگرال بیضوی را بنویسیم، داریم:
x=sinϕ=sn(u,k)
یا
u=∫0sn(1−t2)(1−k2t2)dt
با توجه به قطبها و کران بالای انتگرال بیضوی، دوازده نوع مختلف تابع بیضوی ژاکوبی وجود دارد، اما سه مورد محبوب این توابع عبارتند از: دامنه سینوسی sn(u,k)، دامنه کسینوسی cn(u,k) و تابع بیضوی دامنه دلتا dn(u,k) که روبط زیر بین آنها برقرار است:
sn2+cn2=1 و k2sn2+dn2=1
انتگرال بیضوی
سه فرم اساسی از انتگرالهای بیضوی لژاندر وجود دارد که در اینجا درباره آنها بحث میکنیم. این انتگرالها، نوع اول، نوع دوم و نوع سوم نام دارند. در معروفترین فرم عمومی، انتگرالهای بیضوی در فرمی نمایش داده میشوند که انتگرال ناقص نام دارد و حدود انتگرال، محدوده زیر را شامل میشود:
تعیین طول قوس یک دایره به سادگی و با استفاده از توابع مثلثاتی قابل انجام است. این در صورتی است که برای محاسبه طول قوس یک بیضی از انتگرالهای بیضوی استفاده میشود. همچنین، طول مسیر طی شده یک آونگ را میتوان برای زاویههای کوچک با استفاده از توابع مثلثاتی به دست آورد، اما برای تعیین کل مسیر آونگ باید از انتگرالهای بیضوی استفاده کرد.
روابط بین انتگرالهای بیضوی و مقادیر منتخب آنها
در این بخش، روابط بین انتگرالهای بیضوی را بررسی میکنیم.
انتگرالهای بیضوی کامل نوع اول و دوم K، K′، E و E′
چهار انتگرال بیضوی K، K′، E و E′ در اتحاد زیر صدق میکنند (این اتحاد را لژاندر معرفی کرد):
KE′+K′E−KK′=2π(13)
انتگرالهای بیضوی K و E به عنوان توابعی از مشخصه k با معادلات زیر به هم مربوط میشوند:
dkdEdkdK=k1(E−K)(14)=k(k′)21[E−(k′)2K](15)
انتگرالهای بیضوی ناقص نوع اول و دوم F(ϕ,k) و E(ϕ,k)
به سادگی میتوان یک انتگرال بیضوی را که مکرراً با آن سر و کار داریم و E و F را به هم مربوط میکند معرفی کرد.
D(ϕ,k)=∫0ϕΔsin2θdθ=k2F−E(16)
که در آن:
Δ=1−k2sin2θ(17)
بنابراین:
F=E+k2D(18)
سایر انتگرالهای ناقصی که با D، E و F توصیف میشوند، به صورت زیر هستند:
چندین نوع تابع بیضوی شامل توابع بیضوی «وایرشتراس» (Weierstrass) و توابع تتا وجود دارند، اما رایجترین توابع بیضوی توابع بیضوی ژاکوبی، مبتنی بر معکوس سه نوع انتگرال بیضوی هستند.
توابع بیضوی ژاکوبی
سه فرم استاندارد انتگرالهای بیضوی ژاکوبی با sn(u,k)، cn(u,k) و dn(u,k) مشخص میشوند و به ترتیب، توابع بیضوی دامنه سینوس، کسینوس و دلتا هستند. این توابع با معکوس کردن انتگرال بیضوی نوع اول به دست میآیند:
u=F(ϕ,k)=∫0ϕ1−k2sin2θdθ(44)
که در آن، 0<k2<1 است و k به مشخصه بیضوی u اطلاق میشود. همچنین، ϕ کران بالای انتگرال بیضوی است و دامنه ژاکوبی (amp) نام دارد.
تفاوت اصلی بین انتگرالهای بیضوی ژاکوبی و وایرشتراس، در تعداد قطبهای هر سلول پایه است. در حالی که تابع بیضوی ژاکوبی دو قطب ساده در هر سلول دارد، و میتوان آن را به عنوان یک جواب برای معادله دیفرانسیل زیر در نظر گرفت:
dt2d2x=A+Bx+Cx2+Dx3
تابع بیضوی وایرشتراس یک قطب دوگانه دارد و جواب معادله زیر است:
dt2d2x=A+Bx+Cx2
توابع تتا
توابع تتا مشابههایی برای تابع نمایی هستند و معمولاً به صورت θa(u,q) نوشته میشوند که در آن، a از 1 تا 4 تغییر میکند. در نمایش چهار تابع تتا، u نیز آرگومان تابع است و q نوم (Nome) است که به صورت زیر تعریف میشود:
q=eiπt=eπK′/K(52)
که در آن:
t=−iK(k)K′(k)
اگر علاقهمند به یادگیری مباحث مشابه مطلب بالا هستید، آموزشهایی که در ادامه آمدهاند نیز به شما پیشنهاد میشوند:
سید سراج حمیدی دانشآموخته مهندسی برق است و به ریاضیات و زبان و ادبیات فارسی علاقه دارد. او آموزشهای مهندسی برق، ریاضیات و ادبیات مجله فرادرس را مینویسد.
خانم سکاکی از وقتی که گذاشتید و پاسخی که دادید سپاسگذارم. اولا توی مطلب، فقط نوشته A(x) و B(x) چندجمله ایهایی از ایکس هستند و چیز بیشتری نگفته. ثانیا اگر بخواهیم توضیحات شما را اضافه کنیم، این سوال پیش میاد که مگه چندجمله ای هایی هم وجود دارن که توان غیره طبیعی، یا به عبارتی گویا داشته باشند؟ چون همانطور که خودتون میدانید، توان متغیرها در یک چند جمله ای فقط میتوانند طبیعی یا صفر باشند نه چیز دیگه. وگرنه که دیگه اسمشون چند جمله ای نیست. از طرفی منظور از چند جمله ای ی صحیح، اینه که ظرایب اون صحیح هستند، و در مورد چند جمله ای گویا نیز که یعنی ظرایبشون گویا باشد. باز هم طببعتا اکر یک چند جمله ای ی گویا داشته باشیم، دیگه قرار نیست با اضافه کردن یک چند جمله ای ی صحیح، حالت کلی تری بدست بیاوریم. بنابراین دلیل این جداسازی، لااقل برای رسیدن به حالت کلی تر نیست. خانم سکاکی نظر شما چیست؟
فهیمه سکاکی
با سلام خدمت شما؛
نکتهای که در مورد تعریف چند جملهای بیان کردهاید، کاملا صحیح است و در متن اصلاح شد. در تعریف چند جملهایها، توان متغیرها همواره اعداد صحیح و نامنفی است. بنابراین وجود چند جملهایهایی که توان غیرطبیعی یا گویا داشته باشند، با این تعریف مطابقت ندارد. با این وجود، در مباحث مربوط به انتگرالهای بیضوی، گاهی اوقات با عباراتی روبرو میشویم که شامل توانهای کسری یا منفی از متغیرها هستند و این عبارات را شبه چند جملهای یا همان عبارتهای جبری مینامیم و تنها دلیل استفاده از دو عبارت A(x) و B(x) در فرمول انتگرال بیضوی، دقیقا به همین نکته برمیگردد. در واقع، B(x) به نوعی نماینده بخش غیر گویا از تابع زیر انتگرال است که لزوما یک چند جملهای نیست و علت جداسازی A(x) و B(x) در فرمول انتگرال بیضوی نیز، پوشش حالتهای کلیتر و پیچیدهتر تابع زیر انتگرال است.
از دقتنظر و همراهی شما با مجله فرادرس سپاسگزاریم.
عابر
سلام. جالب بود. ممنون. یک سوال داشتم. توی اولین رابطه، ذکر شده که A(x) و B(x) چندجمله ایهایی از ایکس هستند. با توجه به اینکه مجموع دو چند جمله ای، چند جمله ای هست، پس چه لزومی داشته از دو تا چند جمله ای استفاده بشه؟ چون این دو دقیقا همون کاری میکنند که یکیشون میکنه.؟
فهیمه سکاکی
با سلام خدمت شما؛
نکته بیان شده صحیح است. اما علت نوشتن این فرمول به این شکل این است که A(x) معمولا نشاندهنده چند جملهایهای گویا و B(x) بیانگر چند جملهایهای غیرگویا است که رادیکالها یا توانهای کسری از چندجملهایها را شامل میشود. استفاده از دو چندجمله ای A(x) و B(x) به ما اجازه میدهد تا این حالتهای کلیتر را نیز پوشش دهیم و فرمول جامعتری برای انتگرال بیضوی ارائه دهیم.
شما در حال مطالعه نسخه آفلاین یکی از مطالب «مجله فرادرس» هستید. لطفاً توجه داشته باشید، ممکن است برخی از قابلیتهای تعاملی مطالب، مانند امکان پاسخ به پرسشهای چهار گزینهای و مشاهده جواب صحیح آنها، نمایش نتیجه آزمونها، پاسخ تشریحی سوالات، پخش فایلهای صوتی و تصویری و غیره، در این نسخه در دسترس نباشند. برای دسترسی به نسخه آنلاین مطلب، استفاده از کلیه امکانات آن و داشتن تجربه کاربری بهتر اینجا کلیک کنید.
خانم سکاکی از وقتی که گذاشتید و پاسخی که دادید سپاسگذارم. اولا توی مطلب، فقط نوشته A(x) و B(x) چندجمله ایهایی از ایکس هستند و چیز بیشتری نگفته. ثانیا اگر بخواهیم توضیحات شما را اضافه کنیم، این سوال پیش میاد که مگه چندجمله ای هایی هم وجود دارن که توان غیره طبیعی، یا به عبارتی گویا داشته باشند؟ چون همانطور که خودتون میدانید، توان متغیرها در یک چند جمله ای فقط میتوانند طبیعی یا صفر باشند نه چیز دیگه. وگرنه که دیگه اسمشون چند جمله ای نیست. از طرفی منظور از چند جمله ای ی صحیح، اینه که ظرایب اون صحیح هستند، و در مورد چند جمله ای گویا نیز که یعنی ظرایبشون گویا باشد. باز هم طببعتا اکر یک چند جمله ای ی گویا داشته باشیم، دیگه قرار نیست با اضافه کردن یک چند جمله ای ی صحیح، حالت کلی تری بدست بیاوریم. بنابراین دلیل این جداسازی، لااقل برای رسیدن به حالت کلی تر نیست. خانم سکاکی نظر شما چیست؟
با سلام خدمت شما؛
نکتهای که در مورد تعریف چند جملهای بیان کردهاید، کاملا صحیح است و در متن اصلاح شد. در تعریف چند جملهایها، توان متغیرها همواره اعداد صحیح و نامنفی است. بنابراین وجود چند جملهایهایی که توان غیرطبیعی یا گویا داشته باشند، با این تعریف مطابقت ندارد. با این وجود، در مباحث مربوط به انتگرالهای بیضوی، گاهی اوقات با عباراتی روبرو میشویم که شامل توانهای کسری یا منفی از متغیرها هستند و این عبارات را شبه چند جملهای یا همان عبارتهای جبری مینامیم و تنها دلیل استفاده از دو عبارت A(x) و B(x) در فرمول انتگرال بیضوی، دقیقا به همین نکته برمیگردد. در واقع، B(x) به نوعی نماینده بخش غیر گویا از تابع زیر انتگرال است که لزوما یک چند جملهای نیست و علت جداسازی A(x) و B(x) در فرمول انتگرال بیضوی نیز، پوشش حالتهای کلیتر و پیچیدهتر تابع زیر انتگرال است.
از دقتنظر و همراهی شما با مجله فرادرس سپاسگزاریم.
سلام. جالب بود. ممنون. یک سوال داشتم. توی اولین رابطه، ذکر شده که A(x) و B(x) چندجمله ایهایی از ایکس هستند. با توجه به اینکه مجموع دو چند جمله ای، چند جمله ای هست، پس چه لزومی داشته از دو تا چند جمله ای استفاده بشه؟ چون این دو دقیقا همون کاری میکنند که یکیشون میکنه.؟
با سلام خدمت شما؛
نکته بیان شده صحیح است. اما علت نوشتن این فرمول به این شکل این است که A(x) معمولا نشاندهنده چند جملهایهای گویا و B(x) بیانگر چند جملهایهای غیرگویا است که رادیکالها یا توانهای کسری از چندجملهایها را شامل میشود. استفاده از دو چندجمله ای A(x) و B(x) به ما اجازه میدهد تا این حالتهای کلیتر را نیز پوشش دهیم و فرمول جامعتری برای انتگرال بیضوی ارائه دهیم.
از همراهی شما با مجله فرادرس سپاسگزاریم.