ریاضی , علوم پایه 114299 بازدید

مثلثات به بخشی از ریاضیات اطلاق می‌شود که ارتباط میان زوایا و طول‌ها را مورد بررسی قرار می‌دهد. در این مطلب، سه مفهومِ مهم سینوس، کسینوس و تانژانت را به زبان ساده تعریف خواهیم کرد. احتمالا با حذف این سه‌ مفهوم از علم ریاضی، بخش اعظمی از فیزیک نیز بایستی حذف شود! البته در ریاضیات نیز این مفاهیم به دفعات مشاهده می‌شوند. برای نمونه پاسخ‌های یک معادله درجه ۳ بر حسب سینوس کسینوس ضرایب معادله بدست می‌آیند.

دانلود ویدیو

مثلث قائم‌الزاویه

مثلث قائم‌الزاویه به مثلثی گفته می‌شود که یکی از زوایای آن ۹۰ درجه باشد. در چنین مثلثی دو ضلع عمود بر هم وجود دارد و ضلع سوم انتهای این دو را به یکدیگر متصل می‌کند. سینوس، کسینوس و تانژانت مفاهیمی هستند که در مثلث قائم‌الزاویه معنا و مفهوم پیدا می‌کنند. جهت توضیح روابط مربوط به این مفاهیم، در ابتدا مثلثی قائم‌الزاویه را مطابق با شکل زیر در نظر بگیرید.

sine-cosine

جهت درک بهتر مفاهیم، اجزا یک مثلث قائم‌الزاویه را مطابق با زیر نام‌گذاری می‌کنیم:

  • ضلع مقابل: ضلع قرار گرفته مقابل زاویه θ
  • ضلع مجاور: ضلع قرار گرفته کنار زاویه θ
  • وتر: بزرگ‌ترین ضلع مثلث قائم‌الزاویه

Trigonometry

شکل فوق دو مثلث قائم‌الزاویه و اجزاء آن را نشان می‌دهد.

سینوس، کسینوس و تانژانت

مفاهیم سینوس، کسینوس و تانژانت برابر با نسبت اضلاع یک مثلث قائم‌الزاویه تعریف می‌شوند. در زیر مثلثی قا‌ئم‌الزاویه و توابع مثلثاتی مربوط به آن تعریف شده‌اند.

Trigonometry

سینوس، کسینوس و تانژانت به‌ترتیب با نماد‌های cos ،sin و tan نمایش داده می‌شوند. توجه داشته باشید که برای یک زاویه‌ θ ثابت، این مقادیر ثابت هستند؛ دلیل این امر، افزایش همزمان صورت و مخرج آن‌ها است. در ادامه مثالی ذکر شده که جهت درک بهتر این مفاهیم، مطالعه آن ضروی است.

مثال ۱

مثلثی را مطابق با شکل زیر در نظر بگیرید.

Trigonometry

با توجه به شکل فوق، مقادیر sin 350 ،cos 350 وtan 350 را بدست آورید.

طبق تعریف انجام شده در بالا، مقدار سینوس ۳۵ درجه (sin 350) برابر است با:

Trigonometry

هم‌چنین مقادیر Cos 350 و tan 350 نیز برابرند با:

Trigonometry

ماشین‌ حساب‌های مهندسی و علمی نیز قابلیت محاسبه مقادیر مثلثاتی – یا همان سینوس، کسینوس و تانژانت – را دارند. البته توجه داشته باشید که یک زاویه را می‌توان در دو حالت رادیان یا درجه بیان کرد. برای نمونه ۳.۱۴ رادیان برابر با ۱۸۰ درجه است.

Trigonometry-calculator
در اکثر ماشین‌ حساب‌های مهندسی و علمی امکان محاسبه توابع مثلثاتی وجود دارد.

جهت به‌خاطر سپردن، می‌توانید از شکل‌های زیر استفاده کنید. در این اشکال، از فلش‌های صورتی رنگی استفاده شده که ابتدای آن اندازه ضلع قرار گرفته در صورت و انتهایش اندازه ضلعِ مخرجِ کسر را نشان می‌دهد.

Trigonometry

توجه داشته باشید که مقادیر سینوس و کسینوس کمتر از ۱ و بیشتر از ۱- هستند؛ اما مقدار تانژانت می‌تواند از منفی بینهایت تا مثبت بینهایت تغییر کند.

مثال ۲

با توجه به شکل زیر، مقادیر سینو‌س، کسینوس و تانژانت زاویه ۳۰ درجه را بدست آورید.

با توجه به طول‌های نشان داده شده در شکل فوق می‌توان گفت:

Trigonometry

می‌توانید مقادیر به‌دست آمده در بالا را با استفاده از ماشین‌ حساب چک کنید.

مثال ۳

سینوس، کسینوس و تانژانت زاویه ۴۵ درجه را با توجه به شکل زیر بدست آورید.

Trigonometry

در زاویه ۴۵ درجه، مثلث، همزمان قائم‌الزاویه و متساوی‌ الساقین است؛ بنابراین طولِ اضلاع مجاور و مقابل با هم برابر هستند. از این رو همان‌طور که در ادامه نیز محاسبه شده مقادیر سینوس و کسینوس با هم برابر بوده و مقدار تانژانت نیز برابر با ۱ است. در حقیقت این مقادیر برابرند با:

Trigonometry

در جدول زیر توابع مثلثاتی برای زوایای پرکاربرد در امتحانات، ذکر شده است. پیشنهاد می‌شود جدول مذکور را به خاطر بسپارید.

sine-cosine

بدیهی است که حفظ کردن ۱۵ عدد به نظر دشوار می‌رسد؛‌ از این رو روشی را ارائه می‌دهیم که با استفاده از آن می‌توان مقادیر سینوس و کسینوس را محاسبه کرد. در نتیجه با داشتن این دو مقدار و تقسیم آن‌ها به یکدیگر، مقدار تانژانت نیز قابل محاسبه خواهد بود. انگشت کوچک تا شست را به ترتیب با اعداد ۰ تا ۴ نا‌مگذاری کنید. همانند شکل زیر، این انگشتان را به‌ترتیب در زوایای ۰، ۳۰، ۴۵، ۶۰ و ۹۰ درجه در نظر بگیرید.

sine-cosine-finger-method

به‌منظور محاسبه سینوسِ یک زاویه، از شماره انگشت مرتبط با آن جذر گرفته و بر ۲ تقسیم کنید. برای نمونه فرض کنید می‌خواهید سینوس ۳۰ درجه را محاسبه کنید. همان‌طور که در شکل زیر نیز مشخص شده، انگشت شماره ۱ در زاویه ۳۰ درجه قرار دارد، بنابراین سینوس این زاویه برابر است با:

Trigonometry

به‌منظور محاسبه کسینوس نیز دقیقا همین کار را به‌صورت عکس انجام دهید؛ یعنی شماره انگشت شست برابر با صفر و انگشت کوچک برابر با ۴ است. فرض کنید می‌خواهید کسینوس ۳۰ درجه را محاسبه کنید. همان‌گونه که در شکل فوق می‌بینید شماره ۳ در زاویه ۳۰ درجه قرار دارد (اعداد قرمز رنگ مربوط به محاسبه کسینوس هستند). در نتیجه کسینوس زاویه ۳۰ درجه برابر است با:

سینوس کسینوس

چرا این مفاهیم مهم هستند؟

به راستی چرا این‌ مفاهیم تعریف شده و دارای اهمیت‌اند؟ البته این مفاهیم دارای کاربرد‌های فراوانی هستند؛ اما اصلی‌ترین دلایل آن‌ها موارد زیر هستند.

  • با دانستن زاویه یک کمیت می‌توان اندازه آن را یافت.
  • با دانستن اندازه یک کمیت –برداری– می‌توان زاویه آن را یافت.

شاید بیان بالا برای شما کمی گیج‌کننده باشد؛ از این رو پیشنهاد می‌کنیم که حتما مثال زیر را مطالعه فرمایید.

مثال ۴

با استفاده از مفهوم سینوس، اندازه d را در شکل زیر بیابید.

Trigonometry

فرضیات و مجهول این مسئله به شرح زیر هستند:

  • زاویه کابل با سطح افقی آب برابر با ۳۹ درجه است.
  • طول کابل برابر با ۳۰ متر است.
  • ?=d

همان‌طور که در شکل نیز مشخص شده می‌توان مثلث قائم‌الزاویه‌ای در نظر گرفت که در آن طولِ کابل برابر با وتر، فاصله d برابر با ضلع مقابل و فاصله افقی تا کشتی، برابر با ضلع مجاورِ زاویه ۳۹ درجه است.

در ابتدا با استفاده از ماشین‌ حساب سینوس زاویه ۳۹ درجه برابر با ۰.۶۲۹۳ بدست می‌آید. در حقیقت:

Trigonometry

با ضرب کردن دو طرف رابطه بالا در عدد ۳۰، می‌توان گفت:

Trigonometry

بنابراین اندازه d برابر با ۱۸.۸۸ متر بدست می‌آید.

دیگر توابع

توجه داشته باشید که در مثلثات توابع دیگری نیز وجود دارند که کمتر متداول هستند. این توابع سِکانت، کُسِکانت و کُتانژانت هستند که هرکدام از آن‌ها با استفاده از روابط زیر تعریف می‌شوند:

Trigonometry

رابطه بالا می‌گوید:

  • سکانت = معکوس کسینوس
  • کسکانت = معکوس سینوس
  • کتانژانت = معکوس تانژانت

در صورت علاقه‌مندی به مباحث مرتبط در زمینه ریاضیات پایه، آموزش‌های زیر نیز به شما پیشنهاد می‌شوند:

telegram
twitter

مجید عوض زاده

«مجید عوض‌زاده»، فارغ‌ التحصیل مقطع کارشناسی ارشد رشته مهندسی مکانیک از دانشگاه تهران است. فیزیک، ریاضیات و مهندسی مکانیک از جمله مباحث مورد علاقه او هستند که در رابطه با آن‌ها تولید محتوا می‌کند.

بر اساس رای 3 نفر

آیا این مطلب برای شما مفید بود؟

24 نظر در “سینوس، کسینوس و تانژانت یک زاویه — به زبان ساده

  1. من که ازریاضی چیزی سردرنمیاوردم درمورداین مبحث بعد۱۰سال شروع کردم دوباره به درس بااین مفهوم الان بهترمتوجه شدم درس ممنون

    1. سلام
      تو امتحان یا باید خودشون مقدار سینوس رو بدن یا جدولی باشه که شما از اونجا پیدا کنی یا ماشین حساب باشه

  2. بعد از ۲۰ سال تازه فهمیدم جریان چیه.
    اگر از همون اول کاربردهاش رو بهم میگفتن یاد میگرفتم.
    اینو سیستم اموزشی باید بهم یاد میداد نه جستجو تو گوگل

  3. سلام و تشکر از سایت مفید و کاربردی شما
    سوال: زاویه بین دو شعاع ۵ سانتیمتری بدون داشتن طول کمان چطور میشه بدست آورد؟
    این دو شعاع یک مثلث متساوی الساقین رو میسازه که فقط اندازه دو ساقش مشخصه و طول ضلع مقابل کمتراز نصف یک چهارم دایره هست. از راس ظلع مقابل به زاویه مرکزی اگه یه خط عمود منصف بکشیم میشه ظلع یک مجهول یک مربع که باید مساحتش رو بدست بیاریم.

  4. با سلام..خیلی ممنون که مفهومی توضیح دادین. متاسفانه تو مدرسه همچنین مفهومی رو توضیح نداده بودن و ریاضیات برای من بی معنا بنظر میرسید. ولی الان …در ۳۴ سالگی فهمیدم جریان چی هست . سپاس.

  5. با تشکر از سایت خوب شما :
    می خواستم بپرسم که ماشین حساب نسب هر زاویه را چطوری محاسبه می کند ؟
    به عباری مثلا سینوس ۱۱۱ درجه به چه صورت به دست میاد ؟
    یا تانژانت ۴ درجه ؟

  6. درود
    الان تو سن ۵۰ سالگی با آموزش شما تازه فهمیدم تقریبا این سینوس و … چه معنی میده.
    اون هم داشتم یک برنامه آموزشی cnc میدم که احتیاج پیدا کردم.
    ای کاش می‌شد زمان برگرده عقب.
    ممنونم از اموزش

  7. مگه نمیگن سینوس بین صفر تا یک هست و وتر تو دایره مثلثاتی همیشه یکه پس چرا تو اون سوال چهارم کشتی طول وتر انقد زیادتر از یک شده؟

    1. سلام.
      همان‌طور که می‌دانیم، طبق تعریف، سینوس یک زاویه، برابر با «نسبت» اندازه ضلع مقابل آن به اندازه وتر مثلث است و اندازه این «نسبت»، همواره بین صفر و یک خواهد بود؛ بنابراین، طول اضلاع – هر اندازه‌ای که باشند – اهمیتی ندارد. وتر مثلث (شعاع دایره مثلثاتی) را برای سادگی محاسبات برابر با واحد یا همان یک درنظر می‌گیرند.

    1. سلام و وقت بخیر
      از اینکه همراه فرادرس هستید، بسیار خوشحالیم
      به منظور درک بهتر از نحوه تعریف سینوس و کسینوس زاویه بهتر است ابتدا دایره مثلثاتی را بهتر بشناسید. بنابراین مطالعه مطلب تانژانت و کتانژانت — نسبت‌های مثلثاتی به زبان ساده مناسب به نظر می‌رسد.
      از اینکه به مجله فرادرس توجه دارید سپاس‌گزاریم.

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

برچسب‌ها