برق , مهندسی 30 بازدید

معادله پواسون در ریاضیات یک معادله دیفرانسیل مشتقات جزئی بیضوی است. این معادله در فیزیک، مهندسی برق و مهندسی مکانیک کاربرد گسترده‌ای دارد. به عنوان مثال، معادله پواسون در توصیف میدان پتانسیل ایجاد شده توسط یک بار مفروض و یا توزیع چگالی جرم مورد استفاده قرار می‌گیرد. اگر میدان مغناطیسی مشخص باشد، می‌توان میدان الکترواستاتیک و یا میدان گرانشی را توسط معادله پواسون به دست آورد. معادله پواسون یک تعمیم از معادله لاپلاس است که در فیزیک بسیار مورد استفاده قرار می‌گیرد. نام این معادله از ریاضی‌دان فرانسوی «سایمون پواسون» گرفته شده است.

در مطالب قبلی مجله فرادرس، به معادلات ماکسول (Maxwell Equations) و نیز قانون گاوس (Gauss’ Law) پرداختیم. در این مطلب قصد داریم به بیان معادله پواسون (Poisson’s Equation) بپردازیم. می‌دانیم که میدان مغناطیسی تولید شده توسط مجموعه‌ای از بارهای ثابت (Stationary Charges) را می‌توانیم به صورت گرادیان پتانسیل الکتریکی بنویسیم:

$$ E= – \triangledown \phi $$

این معادله را می‌توان با معادله میدان ترکیب کرد و یک معادله مشتقات جزیی برای پتانسیل اسکالر به دست آورد. بنابراین داریم:

$$ \triangledown ^2 \phi = – \frac {\rho} {\epsilon _0} $$

معادله بالا مثالی از یک نوع مهم از معادلات مشتقات جزیی محسوب می‌شود که به معادله پواسون مشهور است. در عمومی‌ترین فرم آن، معادله پواسون را می‌توان به صورت زیر نوشت:

$$ \triangledown ^2 u = v $$

در معادله بالا، $$ u(r) $$ تابع پتانسیل اسکالر است که باید مقدار آن را به دست آورد. $$ v(r) $$ به عنوان تابع منبع (Source Function) شناخته می‌شود. متداول‌ترین شرایط مرزی (Boundary Condition) که به این معادله اعمال می‌شود، این است که پتانسیل $$ u $$ در بی نهایت صفر شود. معادله پواسون از خاصیت جمع آثار تبعیت می‌کند. اگر $$ u_1 $$ پتانسیل تولید شده توسط تابع منبع $$ v_1 $$ و $$ u_2 $$ پتانسیل تولید شده توسط تابع منبع $$ v_2 $$ باشد، آن‌گاه داریم:

$$ \triangledown ^2 u_1 = v_1 $$

$$ \triangledown ^2 u_2 = v_2 $$

 می‌توان گفت پتانسیل تولید شده توسط $$ v_1 + v_2 $$ برابر با $$ u_1 + u_2 $$ خواهد بود. بنابراین می‌توان نتیجه گرفت که:

$$ \triangledown ^2 {(u_1 + u_2) } =\triangledown ^2 u_1 + \triangledown ^2 u_2 = v_1 + v_2 $$

این حقیقت که معادله پواسون از قضیه جمع آثار تبعیت می‌کند، یک روش عمومی را برای حل این معادلات پیشنهاد می‌دهد. فرض کنید که می‌توانستیم تمام پاسخ‌هایی را که توسط منابع نقطه‌ای تولید می‌شوند، بسازیم. البته تمام این پاسخ‌ها باید در شرایط مرزی مناسب صدق کنند. هر تابع منبع عمومی را می‌توان با مجموعه‌ای از منابع نقطه‌ای با وزن‌های مناسب ایجاد کرد. بنابراین راه حل عمومی معادله پواسون باید به صورت مجموع وزن‌دار (Weighted) پاسخ‌های منبع نقطه‌ای قابل بیان باشد. پس هنگامی که تمام پاسخ‌های منبع نقطه‌ای را بدانیم، می‌توانیم هر پاسخ دیگری را نیز ایجاد کنیم. به بیان ریاضی ما نیاز داریم تا پاسخ عبارت زیر را به دست آوریم:

$$ \triangledown ^2 G (r, r^\prime) = \delta (r – r^\prime) $$

عبارت بالا زمانی که $$ |r|\rightarrow \infty $$، به سمت صفر میل می‌کند. تابع $$ G (r, r^\prime) $$ پاسخی است که توسط یک منبع نقطه‌ای واحد، واقع در $$ r^\prime $$ ایجاد شده است. این تابع در ریاضیات به تابع گرین (Green’s Function) معروف است. جواب ایجاد شده توسط تابع منبع عمومی $$ v(r) $$ مجموع وزن‌دار مناسب تمام پاسخ‌های تابع گرین است:

$$ u(r) = \int G (r, r^\prime) v( r^\prime) d^3 r^\prime $$

به سادگی، با استفاده از رابطه زیر می‌توان نشان داد که این پاسخ صحیح است:

$$ \triangledown ^2 u(r) = \int [\triangledown ^2 G (r, r^\prime)] v( r^\prime) d^3 r^\prime = \int \delta (r – r^\prime) v(r^\prime)d^3 r^\prime = v(r) $$

مجددا از معادله $$  \triangledown ^2 \phi = – \frac {\rho} {\epsilon _0} $$ استفاده می‌کنیم. اگر $$ |G|\rightarrow \infty $$ و $$ |r|\rightarrow 0 $$، آن گاه تابع گرین برای این معادله، در رابطه $$ \triangledown ^2 G (r, r^\prime) = \delta (r – r^\prime) $$ صدق خواهد کرد. در نتیجه به رابطه زیر خواهیم رسید:

$$ G (r, r^\prime) = – \frac {1} {4 \pi}\frac {1} {| r – r^\prime |} $$

تابع گرین دارای فرمی مشابه با پتانسیل تولید شده توسط بار نقطه‌ای است. این نکته بسیار مهم است که با استفاده از تعریف تابع گرین و معادلات بالا، حل عمومی معادله پواسون به صورت زیر نوشته می‌شود:

$$ \phi (r) = \frac {1} {4 \pi \epsilon _0} \int \frac {\rho (r^ \prime)} {|r – r^\prime|}d^3 r^\prime $$

اگر این مطلب برای شما مفید بوده است، آموزش‌های زیر نیز به شما پیشنهاد می‌شوند:

^^

telegram
twitter

مرضیه آقایی

«مرضیه آقایی» دانش‌آموخته مهندسی برق است. فعالیت‌های کاری و پژوهشی او در زمینه کنترل پیش‌بین موتورهای الکتریکی بوده و در حال حاضر، آموزش‌های مهندسی برق مجله فرادرس را می‌نویسد.

آیا این مطلب برای شما مفید بود؟

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *