تونل زنی کوانتومی چیست؟ – به زبان ساده

۴۲۴۹ بازدید
آخرین به‌روزرسانی: ۱۴ آذر ۱۴۰۱
زمان مطالعه: ۴۱ دقیقه
دانلود PDF مقاله
تونل زنی کوانتومی چیست؟ – به زبان سادهتونل زنی کوانتومی چیست؟ – به زبان ساده

درک فیزیک کوانتوم و برخی مفاهیم آن بسیار سخت است. این شاخه از فیزیک به جهان میکروسکوپی و رفتار آن می‌پردازد. جهان در این مقیاس نسبت به جهانی که می‌شناسیم، بسیار متفاوت است. هنگامی که به دنیای اتم‌ها سفر می‌کنیم، قوانین فیزیک کلاسیک کاربردی نخواهند داشت. به عنوان مثال، یک ذره در دنیای ماکروسکوپی، یک ذره و موج، یک موج است. اما بر طبق قوانین کوانتومی، الکترون‌ها می‌توانند همانند ذره یا موج رفتار کنند. حتی اجسام ممکن است در یک زمان در حالت‌های متفاوتی قرار داشته باشند. از این ویژگی برای ساخت کامپیوترهای کوانتومی استفاده شده است. یکی از عجیب‌ترین موضوع‌های مطرح شده در فیزیک کوانتوم، تونل زنی کوانتومی است.

997696

فرض کنید ذره‌ای مانند الکترون یا پروتون را در فضا و در یک طرف سد انرژی پتانسیل قرار می‌دهید. از آنجا که می‌دانید انرژی ذره به اندازه‌ای نیست که از سد پتانسیل بالا و به طرف دیگر سد انرژی برود، آن را برای مدت زمان مشخصی به حال خود رها می‌کنید. پس از بازگشت، اثری از ذره در مکان اولیه نخواهید یافت، بلکه آن را سمت دیگر سد پیدا می‌کنید. ذره موردنظر با حفر تونل به سمت دیگر سد انرژی رفته است. این پدیده بسیار عجیب و در تناقض با قوانین فیزیکی به نظر می‌رسد. در این مطلب، در مورد پدیده تونل زنی کوانتومی، کاربردهای این پدیده و هر آنچه در مورد آن باید بدانید، به زبان ساده صحبت خواهیم کرد. در پایان، کمی در مورد ریاضیات حاکم بر پدیده تونل زنی نیز توضیح می‌دهیم.

تونل زنی کوانتومی چیست ؟

فرض کنید در یک سمت تپه‌ای با ارتفاع مشخص ایستاده‌اید. برای آن‌که به سمت دیگر تپه بروید، هیچ راهی جز بالا رفتن از آن نخواهید داشت. البته راه دیگری نیز وجود دارد. با استفاده از بیل و کلنگ تونلی در تپه حفر کنید و به سمت دیگر بروید. اکنون این مثال ساده را در دنیای فیزیک کوانتوم شبیه‌سازی می‌کنیم. تپه در فیزیک کوانتوم، همان سد انرژی است. برای بالا رفتن از تپه باید انرژی مصرف کنید. اگر خسته یا گرسنه باشید، انرژی کافی برای بالا رفتن از تپه را نخواهید داشت.

نقش شما در فیزیک کوانتوم توسط ذره‌ای مانند الکترون یا پروتون ایفا می‌شود. ذره در یک سمت سد انرژی قرار گرفته است. اگر انرژی ذره به اندازه کافی زیاد باشد، به راحتی از سد انرژی عبور خواهد کرد. اما اگر انرژی آن به اندازه‌ای نباشد که از سد عبور کند، چه اتفاقی رخ می‌دهد؟ برای پاسخ به این پرسش، باید نگاه دوگانه‌ای به ذره‌ای مانند الکترون داشته باشیم. در اینجا، رفتار دوگانه موج-ذره مطرح می‌شود. بر طبق رفتار دوگانه موج-ذره، الکترون نه‌تنها به شکل ذره، بلکه به شکل موج نیز رفتار می‌کند. بنابراین، رفتار موجی الکترون بیان می‌کند که این ذره با احتمال‌های مختلف، در هر جایی از فضا ممکن است قرار داشته باشد. موج نسبت داده شده به الکترون به وجود سد انرژی هیچ اهمیتی نمی‌دهد، گویی آن را اصلا نمی‌بیند.

اکنون پرسیدن این سوال منطقی به نظر می‌رسد، آیا قسمتی از موج در سمت دیگر تپه، ظاهر خواهد شد؟ اگر پاسخِ این پرسش، بله باشد، الکترون یا هر ذره کوانتومی دیگر، با احتمال مشخصی در سمت دیگر سد ظاهر می‌شود. به این پدیده، تونل زنی کوانتومی گفته می‌شود. این پدیده در فیزیک کلاسیک غیرممکن است. به تصویر زیر دقت کنید. برای آن‌که سنگ به سمت دیگر تپه برود، باید مقدار انرژی جنبشی که به آن می‌دهیم، از انرژی پتانسیل تپه بیشتر باشد. در غیر این صورت نمی‌تواند به سمت دیگر تپه برود. در فیزیک کلاسیک، سنگ یا این سمت تپه قرار دارد یا سمت دیگر. اما این حالت در دنیای کوانتوم و برای ذره‌ای مانند الکترون، متفاوت است.

هل دادن توپ

یکی از مهم‌ترین تفاوت‌های فیزیک کلاسیک و فیزیک کوانتوم آن است که احتمالات بر فیزیک کوانتوم، حاکم است. به طور دقیق نمی‌توانیم مکان الکترون را در فضا مشخص کنیم، بلکه قرار گرفتن الکترون در مکان x را با احتمال مشخصی بیان می‌کنیم. دلیل این موضوع به اصل عدم قطعیت هایزنبرگ برمی‌گردد. در ادامه، در مورد این اصل با جزییات بیشتری صحبت خواهیم کرد. رفتار الکترون در مقیاس کوانتومی را با جزییات بیشتری توضیح می‌دهیم. الکترونی را در نظر بگیرید که تنها می‌تواند روی محور x، به سمت چپ یا راست، حرکت کند. حرکت الکترون به سمت راست را مثبت و حرکت آن به سمت چپ را منفی در نظر می‌گیریم. در این حالت، گرچه الکترون به حرکت در یک‌بعد محدود شده است، آن را به عنوان الکترون آزاد در نظر می‌گیریم. زیرا هیچ نیروی خارجی بر آن وارد نمی‌شود.

به بیان دیگر، هیچ عامل خارجی بر حرکت الکترون تاثیر نمی‌گذارد. اکنون سد انرژی را به عنوان عامل خارجی، وارد این سیستم می‌کنیم. سوالی که ممکن است مطرح شود آن است که سد انرژی چگونه ایجاد می‌شود. یک راه آسان برای انجام این کار، وارد کردن الکترونی ساکن به سیستم متشکل از الکترون آزاد است. وجود این الکترون، سدی در برابر حرکت آزادانه الکترون اول خواهد بود.

تعریف سد پتانسیل

ابتدا به این سوال پاسخ می‌دهیم که چگونه وجود الکترون دوم، حرکت الکترون اول را مختل خواهد کرد. از آنجا که بار الکتریکی الکترون‌ها یکسان و منفی است، یکدیگر را با نیروی الکترواستاتیکی دفع می‌کنند. فرض کنید الکترون اول در مکان x1x_1 و الکترون دوم در مکان x2x_2 قرار دارند. الکترون اول را به سمت الکترون دوم حرکت می‌دهیم. این الکترون تا جایی به الکترون دوم نزدیک می‌شود که نیروی دافعه الکترواستاتیکی را احساس کند. در اینجا، دو حالت اتفاق می‌افتد:

  1. اگر نیروی اولیه وارد شده به الکترون اول برای نزدیک کردن آن به الکترون دوم کافی نباشد، این الکترون پس از نزدیک شدن به الکترون دوم و وارد شدن نیروی دافعه الکترواستاتیکی به آن، به عقب برمی‌گردد.
  2. اگر نیروی اولیه وارد شده به الکترون اول برای نزدیک کردن آن به الکترون دوم بسیار زیاد باشد، انرژی جنبشی این الکترون به اندازه‌ای است که بر نیروی دافعه الکترواستاتیکی غلبه و از آن عبور کند.

حالت بالا در تصویر زیر نشان داده شده است. الکترون اول روی محور افقی x حرکت می‌کند. نیروی دافعه بین دو الکترون به صورت تپه‌ای در این محور نشان داده شده است و سد پتانسیل نام دارد. همچنین، مقدار انرژی اولیه داده شده به الکترون اول را نیز می‌توان در این نمودار نشان داد. اگر انرژی اولیه داده شده به الکترون به اندازه کافی بزرگ نباشد، از سد پتانسیل الکترون دوم نخواهد گذشت.

سد پتانسیل

سد پتانسیل ایجاد شده توسط الکترون ممکن است پیچیده باشد و رسم شکل آن کار آسانی نخواهد بود. بنابراین، سد پتانسیل را به شکل بسیار ساده‌تری در نظر می‌گیریم. این نکته را به یاد داشته باشید که شکل سد پتانسیل هرچه باشد، فیزیک حاکم بر تونل زنی کوانتومی تغییری نخواهد کرد. همان‌طور که در تصویر زیر نشان داده شده است، پتانسیل در تمام فضا، به جز فاصله x=0x=0 و x=ax= a، برابر صفر است. در این فاصله، پتانسیل برابر uu خواهد بود. سد پتانسیل در این حالت شبیه پله است. همچنین، این سد پتانسیل فضا را به سه قسمت تقسیم کرده است:

  1. xهای کوچک‌تر از صفر
  2. xهای بین صفر و a
  3. xهای بزرگ‌تر از a
سد پتانسیل ساده

اکنون الکترونی را در سمت چپِ سد پتانسیل قرار می‌دهیم. بر طبق فیزیک کلاسیک، الکترون، تنها هنگامی می‌تواند از این سد عبور کند که انرژی اولیه آن بیشتر از ارتفاع سد پتانسیل باشد. اما فیزیک کوانتوم به این سادگی نخواهد بود. گفتیم تمام اطلاعات ذره‌ کوانتومی مانند سرعت یا مکان آن در تابع موج نسبت داده شده به آن نهفته است. همچنین، تابع موج به صورت مستقیم متناسب با تابع توزیع احتمال ذره کوانتومی خواهد بود. در فیزیک کلاسیک با اطمینان می‌گوییم الکترون در این زمان در مکان a و چند لحظه بعد در مکان b قرار دارد، اما در فیزیک کوانتوم با اطمینان نمی‌توانیم در مورد مکان الکترون صحبت کنیم. هر آنچه در مورد مکان الکترون می‌گوییم برحسب احتمالات است.

سوالی که ممکن است مطرح شود آن است که تابع موج الکترون در هر ناحیه از فضا (سه ناحیه گفته شده در مطالب بالا)‌ به چه شکل خواهد بود. برای پاسخ به این پرسش، باید معادله شرودینگر برای این الکترون را حل کنیم. در ادامه، معادله را با جزییات ریاضی کامل حل خواهیم کرد. معادله شرودینگر را برای دو حالت حل می‌شود:

  1. انرژی الکترون از سد پتانسیل بیشتر باشد.
  2. انرژی الکترون از سد پتانسیل کمتر باشد.

در حالت اول، نکته جدیدی وجود ندارد و الکترون از سد پتانسیل عبور خواهد کرد. حالت دوم، برای ما جالب است و تونل زنی کوانتومی برای این حالت رخ می‌دهد. بر طبق فیزیک کلاسیک، اگر انرژی الکترون از ارتفاع سد پتانسیل کمتر باشد، احتمال یافتن الکترون در سمت دیگر سد، برابر صفر است. در فیزیک کوانتوم، تابع موج الکترون را در نظر می‌گیریم. به بیان دیگر، الکترون به صورت موج در نظر گرفته می‌شود. اگر معادله شرودینگر را برای این حالت حل کنیم، متوجه خواهیم شد که تابع موج الکترون در سمت دیگر سد پتانسیل، غیرصفر است. بنابراین، الکترون با احتمال مشخصی در آنجا یافت می‌شود. به عبارت دیگر، تابع موج الکترون به داخل سد نفوذ و به سمت دیگر سد می‌رود.

تونل زنی کوانتومی

بنابراین، تونل زنی کوانتومی پدیده‌ای کاملا کوانتومی است و در فیزیک کلاسیک جایگاهی ندارد. به شکل تابع موج داخل سد پتانسیل دقت کنید. این تابع، داخل سد به صورت نمایی افت کرده است. این بدان معنا است که احتمال یافتن الکترون داخل سد و پس از آن، به صورت نمایی کاهش می‌یابد. هرچه طول سد بیشتر باشد، احتمال یافتن الکترون در سمت دیگر آن کمتر است. در مقابل، هرچه طول سد کمتر باشد، احتمال یافتن الکترون در سمت دیگر آن بیشتر خواهد بود.

آیا تونل زنی کوانتومی سریع تر از سرعت نور است ؟

به احتمال زیاد اگر به فیلم‌های علمی-تخیلی علاقه‌مند باشید، در قسمتی از فیلم می‌بینید که قهرمان داستان در یک زمان در همه‌جا حضور دارد. بدون شک، سازنده این فیلم، به فیزیک کوانتوم علاقه‌مند بوده است. فیزیک کوانتوم یکی از عجیب‌ترین نظریه‌های مطرح شده در فیزیک است. یکی از اصل‌های پایه کوانتوم می‌گوید که ویژگی‌های جسمی مشخص، مانند سرعت یا مکان‌ آن، به صورت بنیادی نامشخص هستند. به عنوان مثال، نمی‌توان گفت الکترون به طور قطع در مکان مشخصی قرار گرفته است یا با این سرعت حرکت می‌کند. به جای آن، می‌گوییم الکترون با احتمالی مشخصی در این حالت قرار دارد. هر حالت معینی، احتمال مشخصی دارد.

تا هنگامی که ذره کوانتومی با چیزی برهم‌کنش نکند، تمام حالت‌های ممکن به یک اندازه، واقعی هستند. اما باید توجه داشته باشیم که احتمال آن‌ها ممکن است یکسان نباشد. در واقع، به جای احتمال تک، توزیع احتمال داریم. این توزیع احتمال و چگونگی تغییر آن با زمان، در تابعی به نام تابع احتمال، قرار گرفته است. گاهی به کاهش احتمالِ درهم در فضا و تبدیل آن به ویژگی قابل‌اندازه‌گیری مشخص، فروپاشی تابع موج گفته می‌شود. عدم قطعیت در مکان ذره کوانتومی، سبب نتیجه بسیار عجیبی در فیزیک کوانتوم به نام رفتار دوگانه موج-ذره شد. دوبروی، نخستین کسی بود که به این نتیجه عجیب رسید.

این فیزیک‌دان، طول موجی برای ذره کوانتومی به نام طول موج دوبروی تعریف کرد. اگر مقدار این طول موج، بزرگ باشد، عدم قطعیت در تعیین مکان ذره بسیار زیاد خواهد بود. در مقابل، اگر اندازه آن کوچک باشد، عدم قطعیت در تعیین مکان ذره کم است و مکان آن را می‌توان با دقت نسبتا خوبی تعیین کرد. این مورد به خوبی برای ذرات زیراتمی و به طور تقریب برای هر چیزی صدق می‌کند. به این مثال توجه کنید. فرض کنید به هنگام خواندن این مطلب روی صندلی در اتاق خود نشسته‌اید. احتمال کوچکی وجود دارد که در مترو، تاکسی یا اتوبوس و حتی احتمال بسیار اندکی وجود دارد که در کره ماه باشید. اگر کسی شما را مشاهده کند، تابع احتمال مربوط به شما از بین خواهد رفت.

همزمان در همه جا

طول موج دوبروی جسم به تکانه جسم بستگی دارد. می‌دانیم تکانه برابر حاصل‌ضرب جرم ذره در سرعت حرکت آن است. هر چه تکانه ذره‌ای بیشتر باشد، طول موج دوبروی آن کوچک‌تر خواهد بود. بیان ریاضی این طول موج برابر است با:

λ=hp\lambda = \frac { h} {p}

دانشمندان، ذرات کوچکی را با استفاده از انرژی گرمایی به حرکت درآوردند و طول موج دوبروی آن‌ها را اندازه گرفتند. مقدار به‌دست آمده برای این طول موج، چندین مرتبه از طول پلانک کوچک‌تر بود. شما می‌توانید هر جایی در جهان باشید، ولی با احتمال‌های مختلف.

اجازه دهید به مقیاس کوانتومی برویم و ذره‌ای مانند آلفا را در نظر بگیریم. این ذره از دو پروتون و دو نوترون تشکیل شده است. ذره آلفا به صورت تکی همان هسته هلیوم است. این ذره را به عنوان قسمتی از هسته‌های اتمی سنگین‌تر نیز می‌توان در نظر گرفت. در این حالت، ذره آلفا توسط نیروی هسته‌ای قوی، پیوند محکمی با هسته دارد. ذره آلفا را می‌توان به صورت توپی در نظر گرفت که داخل چاه پتانسیل عمیقی به دام افتاده است. توپ، داخل چاه پتانسیل به اطراف حرکت می‌کند، اما به راحتی نمی‌تواند از آن خارج شود. تنها در صورتی که انرژی جنبشی بزرگی به توپ داده شود، از چاه پتانسیل خارج می‌شود.

ذره کوانتومی هیچ شباهتی به توپ ندارد. همان‌طور که گفته شد موقعیت مکانی آن‌ها را نمی‌توان به طور دقیق مشخص کرد. بسته موجی به ذره آلفا نسبت داده می‌شود. این بسته گستره‌ای از مکان‌های محتمل را توصیف می‌کند. مقدار تابع احتمال، به طور ناگهانی در سد پتانسیل، صفر نمی‌شود. به جای آن، مقدار این تابع به صورت نمایی و با شدت زیادی افت می‌کند. گرچه، مقدار آن هیچ‌گاه به طور کامل صفر نخواهد شد، اما به سمت صفر میل می‌کند. بنابراین، ذره آلفا با احتمال بسیار کوچکی، بیرون هسته اتم نیز وجود دارد. در نتیجه، تونل زنی کوانتومی داخل هسته اتم‌ها نیز مشاهده می‌شود. هنگامی که ذره آلفا از هسته خارج می‌شود یا به اصطلاح فرار می‌کند، پرتوزایی تشعشعی رخ می‌دهد. تونل زنی کوانتومی در این فرایند نقش مهمی را ایفا می‌کند.

حالت دیگری از تونل زنی کوانتومی را نیز می‌توان در نظر گرفت. پروتون‌ها، نوترون‌ها، الکترون‌ها و ذرات آلفا می‌توانند به داخل هسته از راه همجوشی هسته‌ای، تونل بزنند. در واقع، اگر پدیده‌ای به نام تونل زنی کوانتومی وجود نداشت، ستاره‌ها نمی‌توانستند هیدروژن را با استفاده از همجوشی به هسته‌های سنگین‌تر تبدیل کنند. حتی صنعت الکترونیک، مانند ترانزیستورها، به تونل زنی کوانتومی وابسته هستند. سوالی که ممکن است مطرح شود آن است که ذره آلفا با چه سرعتی از سد پتانسیل عبور می‌کند. تا جایی که می‌دانیم این عبور به صورت آنی رخ می‌دهد. آیا این بدان معنا است که ذره آلفا با سرعتی بیشتر از سرعت نور از سد پتانسیل عبور می‌کند؟

اندازه‌گیری تجربی سرعت حرکت ذره کوانتومی از سد پتانسیل کار بسیار سختی خواهد بود، زیرا ساختن ساعتی با دقت زیاد برای اندازه‌گیری این پدیده بسیار سریع، کار بسیار سختی است. اما با استفاده از دستگاهی به نام «تداخل‌سنج لیگو» (Laser Interferometer Gravitational-Wave Observatory | LIGO)‌ می‌توان سرعت تونل زنی ذرات را محاسبه کرد. از این تداخل‌سنج برای کشف امواج گرانشی استفاده شد. در این آزمایش، نور لیزر توسط تقسیم‌کننده پرتو، به دو قسمت تقسیم می‌شود. سپس، پرتوهای جدا شده پس از طی کردن دو مسیر متفاوت، به یکدیگر می‌رسند. بسته‌های موج فوتون‌ها با یکدیگر تداخل می‌کنند. طرح تداخل آن‌ها، نسبت به طول مسیر پیموده شده بسیار حساس است.

تداخل سنج LIGO
تداخل‌سنج LIGO

به منظور اندازه‌گیری سرعت تونل زنی کوانتومی، چیدمان تداخل‌سنج را کمی تغییر می‌دهیم. در واقع، می‌خواهیم به جای فرستادن پرتو لیزر، فوتون‌ها را به صورت تکی ارسال کنیم. همچنین، یکی از دو مسیر را با منعکس‌کننده بسیار نازکی، مسدود می‌کنیم. اگر تونل زنی کوانتومی وجود نداشت، تمام فوتون‌های رسیده به بازتاب‌کننده، منعکس می‌شدند. اما می‌دانیم تونل زنی وجود دارد. بنابراین، بسته موج فوتونی به آن سوی سد نفوذ خواهد کرد. در ۹۹٪ مواقع، فوتون منعکس می‌شود. تنها در یک درصد مواقع، فوتون در سمت دیگر سد بازتاب‌کنند‌ه یافت خواهد شد و به مسیر خود ادامه می‌دهد.

در این آزمایش، دو دسته فوتون به آشکارساز می‌رسند:

  1. فوتون‌هایی که از سد بازتاب‌کننده با استفاده از تونل زنی عبور کرده‌اند.
  2. فوتون‌هایی که از مسیر بدون مانع عبور می‌کنند.

اگر فوتون‌های گروه ۱ به صورت آنی از سد عبور کرده باشند، باید کمی زودتر از فوتون‌های گروه دوم به آشکارساز برسند. این تفاوت هنگامی آشکار است که بسته موج فوتون‌ها در انتها بر یکدیگر منطبق نباشند. برای این کار، مسیرهای تداخل‌سنج باید با دقت بسیار بالایی با یکدیگر برابر باشند. برای داشتن دو مسیر کاملا مساوی، باید از یکی دیگر از عجایب فیزیک کوانتوم به نام درهم‌تنیدگی کوانتومی، استفاده کنیم. برای تولید حالت‌های درهم‌تنیده، طولِ مسیرهای تداخل‌سنج باید با دقت بسیار زیادی با یکدیگر برابر و یکسان باشند. طول مسیرها را تا ظاهر شدن اثرات درهم‌تنیدگی، تنظیم می‌کنیم.

هنگامی که طول مسیرها با یکدیگر برابر شدند، هر تفاوت کوچکی در زمان طی شده توسط فوتون‌ها را می‌توانیم اندازه بگیریم. تیمی از فیزیک‌دان‌های متبحر، این آزمایش را با موفقیت انجام دادند. در این آزمایش، از سدی به ضخامت ۱/۱ میکرومتر استفاده و تاخیر زمانی تونل زنی فوتون از سد قرار گرفته در مسیر، اندازه گرفته شد. بر طبق یافته‌های این گروه، فوتون‌های تونل‌زننده کمی زودتر به آشکارساز رسیدند. بله، به نقطه‌ای رسیدیم که با فیزیک نسبیت اینشتین در تقابل است. بر طبق فیزیک نسبیت، سرعت نور، حد سرعت عالم است و هیچ چیزی سریع‌تر از نور حرکت نمی‌کند. تناقض با نسبیت تنها در اعماق فیزیک کوانتوم مشاهده شده است.

مکان هر ذره در محدوده همسایگی طول موج دوبروی آن قرار گرفته است. عدم قطعیت در مکان سبب تونل زنی کوانتومی می‌شود. فرض کنید مانعی در مسیر حرکت فوتون‌ها قرار نگرفته باشد، بی‌نظمی در مکان منجر به عدم قطعیت در زمان رسیدن فوتون می‌شود. فوتونی را در نظر بگیرید که از مسیر بدون مانعی عبور می‌کند. این فوتون می‌تواند نسبت به فوتون تونلی، زودتر برسد، زیرا بسته موج فوتون اول از گستره‌ای از مکان‌های ممکن تشکیل شده است. با قرار دادن مانع در مسیر فوتون، شکل بسته موج آن را تغییر می‌دهیم. در این حالت، تنها حالت زودتر رسیدن، انتخاب می‌شود. بنابراین، این‌گونه به نظر می‌رسد که سرعت نور افزایش یافته است.

کاربردهای تونل زنی کوانتومی چیست ؟

تونل زنی کاربردهای فراوانی در تکنولوژی، مانند فلش مموری‌ها، میکروسکوپ گتونل زنی و گسیل میدانی دارد. مهم‌ترین این کاربردها عبارت هستند از:

بر اساس رای ۱۸ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
QUANTUM TUNNELING AND FLASH MEMORYnanoSمجله فرادرس
۵ دیدگاه برای «تونل زنی کوانتومی چیست؟ – به زبان ساده»

خیلی موضوعات عالی بود، واقعا استفاده کردیم دست نویسنده درد نکنه خدا خیرش بده

سلام وقت بخیر
لازم دانستم بابت توضیحات خوب و روانتان تشکر کنم
موفقیت روز افزون را برایتان خواهانم

سلام وقت شما بخیر.
واقعا مقاله خیلی خوب و مفیدی درباره فیزیک کوانتوم بود.
من واقعا هرچی مقاله درباره کوانتوم خونده بودم یه طرف این یدونه مقاله یه طرف دیگه‌.
ولی یه سوال کوچیک اینکه مثلا الکترون وقتی با سد پتانسیل مواجه میشه از داخلش عبور میکنه یا به خاطر عدم قطعیت احتمالا یهویی اون طرف سد پتانسیل ظاهر بشه؟
با تشکر

سلام و وقت بخیر؛
با سپاس از همراهی شما با مجله فرادرس، در قسمت زمان تونل زنی کوانتومی، در این مورد توضیح داده شده است.
با تشکر

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *