تونل باد (Wind Tunnel) در مهندسی مکانیک — از صفر تا صد

۳۱۲۷ بازدید
آخرین به‌روزرسانی: ۲۵ اردیبهشت ۱۴۰۲
زمان مطالعه: ۱۰ دقیقه
تونل باد (Wind Tunnel) در مهندسی مکانیک — از صفر تا صد

تونل باد را می‌توان به عنوان یک محفظه بسیار بزرگ معرفی کرد که جریان هوا در آن با سرعت مشخصی در حال حرکت است. یکی از کاربردهای تونل باد، شبیه‌سازی وضعیت پرواز است. در این حالت، محققین از تونل باد برای فهم دقیق شیوه پرواز هواپیما، استفاده می‌کنند. برای مثال شرکت «ناسا» (NASA) با انجام آزمایش روی مدل‌های کوچک هواپیما و فضاپیما در تونل‌های باد، به پیشرفت علم هوافضا و آیرودینامیک کمک بسیار زیادی کرده است.

برخی از تونل‌های باد، به اندازه کافی بزرگ هستند و به کمک آن‌ها می‌توان اجسام با اندازه واقعی را مورد آزمایش قرار داد. تونل باد، جریان هوا را از اطراف جسمی مانند هواپیما عبور می‌دهد و در این حالت، تصور می‌شود که این جسم به صورت واقعی در حال پرواز است. در واقع در حالت واقعی، جسم در هوا حرکت می‌کند و در تونل باد، هوا روی جسم در حال حرکت است. در هر دو حالت ذکر شده، سرعت نسبی جسم و هوا نسبت به یکدیگر یکسان هستند.

در مکانیک سیالات دو راه برای محاسبه پارامترهای مختلف میدان جریان سیال مانند سرعت و فشار موجود است. راه اول حل عددی معادلات ناویر استوکس و پیوستگی در علم دینامیک سیالات محاسباتی است که این حل‌های عددی با استفاده از روش‌های مختلف مانند روش تفاضل محدود، روش حجم محدود و المان محدود انجام می‌شوند. راه دوم نیز انجام آزمایشات تجربی در تونل‌های باد و یا محیط‌های آزمایشگاهی دیگر است.

این مطلب ابتدا به بررسی تونل‌های باد و کاربرد آن‌ها می‌پردازد و سپس اجزای مختلف این تونل‌های باد و روابط حاکم بر آن‌ها را مورد ارزیابی قرار می‌دهد.

تونل باد چگونه کار می‌کند؟

اکثر مواقع، فن‌های قدرتمندی باعث جریان یافتن هوا در تونل باد می‌شوند. فن، یک توربوماشین است که سیال کاری آن، هوا در نظر گرفته می‌شود. جسم مورد آزمایش در تونل باد، در یک نقطه ثابت شده و قابلیت حرکت ندارد. این جسم می‌تواند یک مدل کوچک از ماشین و یا یک قسمت جزئی آن و یا حتی یک هواپیما و فضاپیما، با اندازه واقعی باشد. جسم قرار گرفته در تونل باد را می‌توان یک مدل رایج واقعی مانند توپ تنیس نیز در نظر گرفت. در این حالت، هوای عبوری از اطراف جسم ساکن در تونل باد، نماینده خوبی برای بیان حالتی است که جسم در دنیای واقعی، درون هوا حرکت می‌کند.

برای نشان دادن شیوه تغییراتی که روی هوا اطراف جسم صورت می‌گیرد، از «دود» (Smoke) استفاده می‌شود. دود همراه جریان اطراف جسم حرکت می‌کند و شیوه تغییرات جریان را نمایش می‌دهد. این مورد در شکل زیر نشان داده شده است. گردابه‌ها و جریان دنباله‌ای پشت این توپ تنیس به وضوح در این شکل قابل رویت هستند.

جریان اطراف توپ تنیس در تونل باد

در واقع به صورت کلی می‌توان بیان کرد که تونل باد، ابزاری است که از آن برای مطالعه برخورد هوا با یک جسم استفاده می‌شود. همانطور که بیان شد، مدل در مقطع تست تونل باد به صورت ساکن قرار داده شده است، بنابراین نیروی لیفت و درگ وارد بر آن را می‌توان به راحتی با محاسبه میزان نیروی کششی در راستاهای مختلف آن مقطع ثابت، اندازه‌گیری کرد.

آشکارسازی جریان در تونل باد
آشکارسازی جریان با استفاده از تزریق دود اطراف یک اتومبیل در تونل باد
نمایش جریان با خاک رس
بررسی جریان اطراف بال هواپیما در یک تونل باد

برای اندازه‌گیری خطوط جریان و «آشفتگی» (Turbulence) موجود در سطح، می‌توان از روغن‌های رنگی و یا خاک رس استفاده کرد. همچنین خطوط جریان در نقاط کمی دورتر از سطح را می‌توان با استفاده از تزریق دود نمایش داد. تونل‌های باد پیشرفته با استفاده از «اثر داپلر» (Doppler Effect) و یا دوربین‌هایی با سرعت ضبط تصویر بالا، جریان هوا اطراف جسم را به نمایش می‌گذارند. شکل زیر روش «سرعت سنجی تصویری ذرات» (Particle Image Velocimetry) را به تصویر کشیده است. این روش به صورت خلاصه با نماد PIV نمایش داده می‌شود.

PIV سرعت سنجی تصویری ذرات
روش PIV برای محاسبه میدان سرعت

در روش PIV، قسمتی از جریان عبوری از روی جسم با لیزر روشن و در فواصل زمانی کوتاه به کمک دوربین سریع تصویر برداری می‌شود. در نهایت، تحلیل این تصاویر با استفاده از نرم‌افزارهای پردازش تصویر صورت می‌پذیرد و با استفاده از این تحلیل‌ها، میدان جریان اطراف جسم محاسبه می‌شود. در واقع به صورت خلاصه در این روش، ابتدا باید با استفاده از پردازش تصویر، میزان جابه‌جایی تک تک ذرات در یک فاصله زمانی مشخص را محاسبه کرد و بعد از آن با اندازه‌گیری حاصل تقسیم جابه‌جایی ذرات بر فاصله زمانی، سرعت هرکدام از ذرات را به دست آورد.

تونل‌های باد را می‌توان بر اساس شکل ظاهری به دو دسته کلی «تونل‌های باد مدار بسته» (Closed-Circuit Wind Tunnels) و یا «مدار باز» (Open-Circuit) تقسیم‌بندی کرد. همچنین بر اساس سرعت هوا، تونل باد به چهار دسته «زیر صوت» (Subsonic)، «نزدیک صوت» (Transonic)، «صوت» (Sonic)، «بالای صوت» (Supersonic) و «مافوق صوت» (Hypersonic) تقسیم می‌شوند.

همانطور که در مطالب قبلی وبلاگ فرادرس اشاره شد، عدد ماخ به صورت نسبت سرعت سیال به سرعت صوت در آن دما تعریف می‌شود. این موضوع را می‌توان با استفاده از رابطه زیر بیان کرد.

در این رابطه، u سرعت سیال و c سرعت صوت را نشان می‌دهند. در صورتی که عدد ماخ کمتر از 0.8 باشد، جریان به صورت زیر صوت است. اگر عدد ماخ در محدوده 0.8 تا 1.2 قرار بگیرد، جریان حاصل جریان نزدیک صوت نامیده می‌شود. در صورتی که عدد ماخ بین 1.2 تا ۵ قرار بگیرد جریان را بالای صوت می‌نامند و جریان با عدد ماخ در محدوده ۵ تا ۱۰ مافوق صوت نامیده می‌شود.

یکی دیگر از انواع دسته‌بندی‌های تونل‌های باد، دسته‌بندی بر اساس فشار هوا است. در این حالت، تونل‌های باد شامل دو دسته «اتمسفری» (Atmospheric) و «چگالی متغیر» (Variable- Density) هستند.

هوای تونل باد در سرعت‌های کمتر از سرعت صوت با استفاده از فن‌های بزرگ تولید می‌شود. در سرعت بالاتر از سرعت صوت، از دو روش می‌توان برای ایجاد جریان هوا استفاده کرد. روش اول، تزریق جریان هوای فشرده از یک مخزن هوای فشرده در بالادست تونل باد است و در روش دوم از یک «تانک خلا» (Vacuum Tank) که در انتهای تونل باد قرار داده شده، استفاده می‌شود. در برخی از موارد نیز برای تولید یک سرعت مافوق صوت (سرعت جریان هوا در این حالت حداقل پنج برابر سرعت صوت است) از ترکیب این دو روش استفاده می‌شود.

تونل باد مافوق صوت
تونل باد با سرعتی بیشتر از سرعت صوت

اجزای اصلی تونل باد، شامل «مخروط ورودی» (Entrance Cone)، مقطع تست (Test Section)، «ناحیه عبور» (Regain Passage)، «موتور یا ملخ» (Propeller or Motor) و «ناحیه بازگشت» (Return Passage) است. «مستقیم‌کننده‌های جریان» (Flow Straighteners)، «پره‌های زاویه‌دار» (Corner Vanes)، «ردیف‌های هانی کامب» (Honeycomb Layers) که برای کاهش آشفتگی جریان استفاده می‌شوند، «مبدل‌های حرارتی هوا» (Air Heat Exchangers) و «دیفیوزرها» (Diffusers) نیز اجزای دیگری هستند که در تونل‌های باد مشاهده می‌شوند.

فشار سطح جسم در تونل‌های باد با استفاده از ایجاد حفره‌های کوچک روی سطح جسم و یا با استفاده از «لوله پیتوت» (Pitot Tubes) قابل اندازه‌گیری است. نیروهایی که به مدل وارد می‌شود را می‌توان با استفاده از اندازه‌گیری پارامترهای مختلف جریان در بالادست و پایین دست مدل، محاسبه کرد. با استفاده از لوله پیتوت می‌توان علاوه بر اندازه‌گیری فشار، سرعت جریان در بالا دست را نیز به شکل زیر به دست آورد.

لوله پیتوت
لوله پیتوت

فشار کل = فشار استاتیک + فشار دینامیک

فشار کل و فشار استاتیک

بنابراین برای اندازه‌گیری سرعت جریان بالادست، ابتدا باید با استفاده از لوله پیتوت فشار استاتیک و کل را مانند شکل بالا محاسبه کنیم. در نهایت به کمک رابطه بالا سرعت جریان سیال قابل محاسبه است. رابطه خلاصه شده سرعت جریان را می‌توان به شکل زیر بازنویسی کرد.

لوله پیتوت

تونل‌ باد و ورزش

امروزه تونل‌های باد در ورزش‌های گوناگونی مورد استفاده قرار می‌گیرد که در آن‌ها سرعت ورزشکار، پارامتر بسیار مهم برای برنده شدن است. مسابقات موتورسواری، اتومبیل‌رانی، دوچرخه سواری، اسکی و قایقرانی، فقط بخشی از مثال‌هایی هستند که در آن‌ها از تونل باد برای کاهش تنها چند میلی ثانیه زمان استفاده می‌شود. در واقع شبیه‌سازی مسابقه و پرواز با استفاده از تونل باد و در نهایت اصلاح طراحی و ساخت، بسیار راحت‌تر از زمانی است که تست در محیط بیرون و واقعی انجام می‌شود.

کاربرد تونل‌های باد در دوچرخه‌سواری
کاربرد تونل‌های باد در قایقرانی
کاربرد تونل‌های باد در اسکی

همانطور که می‌دانید اکثر اتومبیل‌ها نیروی لیفت تولید می‌کنند. در این حالت، با افزایش سرعت اتومبیل، نیروی لیفت آن نیز افزایش پیدا می‌کند و تحت این شرایط اتومبیل ناپایدار می‌شود. برای مقابله با این شرایط، بسیاری از اتومبیل‌ها طوری طراحی شدند که در هنگام حرکت، لیفت منفی تولید کنند.

خودروهای خانواده «سدان» (Sedan) ضریب لیفتی برابر با 0.3 دارند، این در حالی است که ضریب لیفت خودروهای فرمول یک در حدود 3.8 محاسبه شده است. تمامی این موارد را می‌توان در یک تونل باد مشاهده و اندازه‌گیری کرد و از نتایج آن برای طراحی بهتر استفاده کرد.

همانطور که می‌دانیم، ضریب لیفت و ضریب درگ، پارامترهای بی‌بعدی هستند که با استفاده از تحلیل ابعادی در مسائل مختلف محاسبه می‌شوند و می‌توان آن‌ها را به ترتیب با استفاده از روابط زیر اندازه‌گیری کرد.

ضریب لیفت

ضریب درگ

در این رابطه Fl و Fd به ترتیب نیروی لیفت و درگ را نشان می‌دهند. ρ چگالی سیال را بیان می‌کند و A مساحت سطحی از جسم است که نیروی لیفت و درگ را تجربه می‌کند. تعریف درست این مساحت در علوم مختلف متفاوت است و به عنوان یک قرار داد در علوم مختلف برای نمایش ضریب لیفت و درگ در نظر گرفته می‌شود.

اجزای تونل باد

تونل باد محیطی است که علاوه بر مهندسان هوافضا که کار تجربی انجام می‌دهند توسط متخصصان «دینامیک سیالات محاسباتی» (Computational Fluid Dynamics) نیز مورد استفاده قرار می‌گیرد. دینامیک سیالات محاسباتی، بخشی از علم آیرودینامیک است که به صورت خلاصه با نماد CFD نمایش داده می‌شود که ویژگی‌های جریان عبوری از روی اجسام و درون آن‌ها را با استفاده از کامپیوتر مورد محاسبه قرار می‌دهد.

تونل‌های باد مدار بسته به نسبت تونل‌های مدار باز، جریان یکنواخت‌تری را تولید می‌کنند و به صورت رایج، تونل‌های باد بزرگ مانند تونل‌های مورد استفاده از فرمول یک را با استفاده از این نوع تونل‌ها می‌سازند. طراحی و ساخت این تونل‌ها نیاز به در نظر گرفتن ملاحظات بسیاری دارد. این تونل‌ها باید طوری طراحی شوند که جریان عبوری از گوشه‌ها مقدار آشفتگی یا توربولانس کم‌تری را تجربه کند و به صورت یکنواخت وارد مقطع تست شود. شکل زیر اجزای مختلف یک تونل باد مدار بسته را نشان داده است.

تونل باد مدار بسته
تونل باد مدار بسته

شکل زیر نمونه‌ای از یک تونل باد مدار باز را به تصویر کشیده است.

تونل باد مدار باز
تونل باد مدار باز

«وین‌های گوشه» (Corner Vanes)، ابزاری برای هدایت و مستقیم کردن جریان هوا در گوشه‌های یک تونل باد هستند و از آشفته شدن جریان در این نواحی جلوگیری می‌کنند.

وین‌ گوشه تونل باد
وین‌ گوشه در یک تونل باد

هوای عبوری از مقطع تست تونل باد باید رژیم «لایه‌ای» (Laminar) را تجربه کند. برای جلوگیری از توربولانس شدن جریان در این مقطع، از یک سری مقاطع بسته استفاده می‌شود که این مقاطع به صورت عمودی و افقی مطابق شکل زیر در فاصله نزدیک از هم قرار گرفتند. در واقع سیال قبل از ورود به محفظه تست، از درون حفره‌هایی به شکل لانه زنبور عبور می‌کنند که این حفره‌ها هانی کامب‌ نامیده می‌شوند و در شکل زیر شیوه استفاده از آن‌ها در تونل باد نشان داده شده است. نکته مهم در رابطه با هانی‌کامب‌ها این است که طراحی و ساخت باید طوری صورت بگیرد که طول هانی‌کامب‌ها حداقل شش برابر قطرشان باشد.

هانی کامب
هانی کامب تونل باد
هانی کامب
هانی کامب تونل باد

یک وین دیگر در نقطه‌ای از تونل باد قرار می‌گیرد که «بریزر» (Breather) نامیده می‌شود. وظیفه این عضو تونل باد این است که فشار داخلی را طوری تنظیم کند که با افزایش دمای سیال، فشار آن افزایش نیابد. مکان بهینه برای قرار گرفتن این عضو، مکانی است که فشار هوای داخلی در نزدیکی فشار اتمسفر قرار داشته باشد و معمولا در پایین دست مقطع تست قرار داده می‌شود.

یکی دیگر از اجزای اصلی و حیاتی تونل باد، خنک کننده است. مبدل حرارتی در آرام‌ترین نقطه تونل قرار می‌گیرد تا افت فشار را به حداقل برساند و بازده انتقال حرارت را افزایش دهد.

اکثر تونل‌های باد مدار بسته، از فن‌های محوری استفاده می‌کنند و باعث افزایش فشار استاتیک می‌شوند. طراحی فن‌های محوری برای تونل‌های باد، امری بسیار پیچیده است و این موضوع، دلیل استفاده از فن‌هایی با طراحی خاص در تونل‌های باد فرمول یک است. این فن‌ها به صورت گسترده با هدف افزایش بازده و کاهش اثرات دیواره طراحی می‌شوند.

فن محوری تونل باد
فن محوری در یک تونل باد
فن محوری
فن محوری تونل باد ناسا

تونل‌های باد چگونه به طراحی فضاپیماها کمک می‌کنند؟

ناسا فضاپیماها و راکت‌ها را نیز با استفاده از تونل‌های باد مورد آزمایش قرار می‌دهد. همانطور که می‌دانید فضاپیماها، ماشین‌هایی هستند که برای عمل در فضا طراحی شدند و در فضا هیچ اتمسفری وجود ندارد. این ماشین‌ها برای آن‌که به فضا برسند، باید از اتمسفر عبور کنند. علاوه بر این، تمامی ماشین‌هایی که انسان‌ها را به فضا می‌برند، برای بازگشت به زمین نیز باید از اتمسفر عبور کنند.

ناسا برای تست کردن میزان امنیت فضاپیماهایی که انسان‌ها و تجهیزات را به فضا می‌برند، فضاپیماها را درون تونل باد مورد آزمایش قرار می‌دهد. نکته دیگر این است که، آزمایش تونل باد روی این ابزار و تجهیزات برای اطمینان از صحت کامل آن‌ها هنگام ورود به زمین نیز صورت می‌گیرد.

علاوه بر موارد ذکر شده، تونل‌های باد به مهندسان کمک می‌کند تا فضاپیماهایی را با طراحی مناسب جهت کار کردن در سیاره‌های دیگر، تولید کنند. برای مثال، مریخ اتمسفر سبکی دارد و شیوه رفتار فضاپیما در این شرایط، نقش بسیار مهمی در طراحی آن‌ها بازی می‌کند. بنابراین همانطور که اشاره شد، طراحی مناسب یک فضاپیما امری بسیار مهم است و باید طراحی فضاپیما طوری صورت بگیرد که در شرایط مختلف جو و تغییرات آن، عملکرد مناسبی از خود نشان بدهد و رسیدن به این هدف، جز با انجام آزمایشات مختلف در تونل‌های باد امکان پذیر نخواهد بود. بنابراین فضاپیما و چتر نجات مورد استفاده فضانوردان برای شبیه‌سازی شرایط اتمسفر مریخ، در یک تونل باد مورد آزمایش قرار می‌گیرند. شکل زیر مدل یک شاتل که در تونل باد مورد آزمایش قرار گرفته است را به تصویر کشیده است.

شاتل فضایی در تونل باد
مدل شاتل فضایی در تونل باد

ناسا انواع مختلفی از تونل‌های باد را برای انجام آزمایش‌های گوناگون مورد استفاده قرار می‌دهد. برخی از این تونل‌های باد، اندازه‌ای برابر با چند سانتی متر مربع دارند و برخی از آن‌ها به اندازه‌ای بزرگ هستند که یک هواپیما با اندازه واقعی در آن تست می‌شود. عده‌ای از این تونل‌های باد، هوایپماها را در سرعت‌های بسیار پایین مورد آزمایش قرار می‌دهند و عده‌ای دیگر هواپیماها را در سرعت‌های مافوق صوت، تست می‌کنند.

همانطور که بیان شد، تونل باد، ابزاری است که از آن برای مطالعه برخورد هوا با یک جسم استفاده می‌شود و حضور تونل‌های باد، به طراحی و ساخت دقیق ابزارها و ماشین‌های مختلف در علم آیرودینامیک کمک بسیار زیادی کرده است. همچنین حضور این تونل‌ها باعث پیشرفت در ورزش‌هایی شده که سرعت در آن‌ها اهمیت بسیار زیادی دارد.

این مطلب به صورت دقیق تونل‌های باد و روابط حاکم بر آن‌ها را مورد بررسی قرار داده است. همچنین انواع توربین‌های باد و اجزای مختلف آن‌ها نیز با بیان جزئیات مورد بررسی قرار گرفته‌اند.

در صورتی که به مباحث ارائه شده، علاقه‌مند هستید و قصد یادگیری در زمینه‌های مطرح شده در مکانیک سیالات را دارید، آموز‌ش‌های زیر به شما پیشنهاد می‌شوند:

^^

بر اساس رای ۲۹ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
Formula1NASA
۱ دیدگاه برای «تونل باد (Wind Tunnel) در مهندسی مکانیک — از صفر تا صد»

عالی. مچکرم

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *