تابع چند ضابطه ای – به زبان ساده

۴۹۳۸۱
۱۴۰۴/۱۰/۱
۵ دقیقه
PDF
آموزش متنی جامع
نمونه سوال و تمرین + پاسخ تشریحی
آزمون سنجش یادگیری
امکان دانلود نسخه PDF

«تابع چند ضابطه ای» یا تکه‌ای (Piecewise Function) تابعی است که چند تکه یا بخش دارد. این نوع توابع به صورت تکه تکه و با چند ضابطه مختلف برای هر تکه در بازه‌های مربوط به آن‌ها تعریف می‌شوند. در این آموزش، با تابع چند ضابطه ای آشنا می‌شویم.

تابع چند ضابطه ای – به زبان سادهتابع چند ضابطه ای – به زبان ساده
997696

تابع چند ضابطه ای

تابع چند ضابطه ای به چندین بخش یا تکه تقسیم می‌شود. هر تکه متفاوت با تکه‌های دیگر است و بر اساس ضابطه تعریف شده در آن بازه رفتار می‌کند.

این تکه‌ها می‌توانند نقطه، خط یا منحنی باشند. برای مثال، تابع چند ضابطه ای زیر سه تکه دارد. تکه روی بازه 4x1- 4 \leq x \leq - 1 تابع f(x)=3x+5f ( x ) = 3 x + 5 را نمایش می‌دهد. تکه بازه 1x<3- 1 \le x < 3 نشان دهنده تابع f(x)=2f ( x ) = 2 است و در نهایت، روی بازه 3x43 \le x \le 4 تابع f(x)=x+2f ( x ) = - x + 2 را داریم.

تابع چند ضابطه ای

با استفاده از نمادگذاری تابع، نمودار را به صورت زیر نمایش می‌دهیم:

f(x)={3x+54x121x<3x+23x4.\large f ( x ) = \begin {cases} 3 x + 5 & - 4 \leq x \leq - 1 \\ 2 & - 1 \leq x < 3 \\ - x + 2 & 3 \leq x \leq 4 \end {cases} .

مثالی از تابع چند ضابطه ای

یک کارخانه تولید ورق، هزینه پایه‌ای معادل با ۲ دلار به علاوه هزینه وابسته به زمان ۰٫۵ دلار در دقیقه دارد. البته، قبل از طی یک زمان مشخص، هزینه ثابت و مقدار آن ۷ است. کدام تابع زیر، هزینه f(x)f ( x ) تولید ورق را برای xx دقیقه نشان می‌دهد؟

(الف)

f(x)={70<x72+0.50xx>7\large f ( x ) = \begin {cases} 7 & 0 < x \leq 7 \\ 2 + 0.5 0 x & x > 7 \end {cases}

(ب)

f(x)={70<x102+0.50xx>10\large f ( x ) = \begin {cases} 7 & 0 < x \leq 10 \\ 2 + 0.5 0 x & x > 10 \end {cases}

(ج)

f(x)={70<x142+0.50xx>14\large f ( x ) = \begin {cases} 7 & 0 < x \leq 1 4 \\ 2 + 0.5 0 x & x > 14 \end {cases}

پاسخ: می‌دانیم که xx تعداد دقیقه‌ها است. همان‌طور که گفتیم، هزینه قبل از رسیدن به یک زمان مشخص، ثابت و برابر با ۷ دلار است. بنابراین، لازم است بدانیم در چه لحظه‌ای که هزینه ۷ دلار است. این زمانی است که تساوی 2+0.5x=72 + 0.5 x = 7 را داشته باشیم، بنابراین x=5x = 5 یا x=10x = 10 خواهد بود. در نتیجه، تابع (ب) جواب صحیح است.

مثالی از تابع قدر مطلق

یکی از توابع چند ضابطه ای معروف تابع قدر مطلق است. چگونه می‌توانیم تابع f(x)=xf ( x ) = | x | را به صورت یک تابع چند ضابطه ای بنویسیم؟

حل: تابع f(x)=xf ( x ) = |x | ترکیبی از دو تابع خطی است و می‌توان آن را به صورت یک تابع دوضابطه‌ای نوشت:

f(x)={xx<0xx0.\large f ( x ) = \begin {cases} - x & x < 0 \\ x & x \geq 0 \end {cases} .

ارزیابی توابع چند جمله ای

وقتی بخواهیم یک تابع چند ضابطه ای را ارزیابی کنیم (مقدار آن را به ازای نقاط داده شده به دست آوریم)، لازم است مقدار تابع را در هر تکه‌ای که لازم است، محاسبه کنیم. فرض کنید می‌‌خواهیم f(2)f ( - 2 ) را محاسبه کنیم. اگر f(x)f ( x ) به صورت زیر باشد:

f(x)={3x+54x121x<3x+23x4.\large f ( x ) = \begin {cases} 3 x + 5 & - 4 \leq x \leq - 1 \\ 2 & - 1 \leq x < 3 \\ - x + 2 & 3 \leq x \leq 4 \end {cases} .

f(2)f ( - 2) مشخص می‌کند که می‌خواهیم مقدار تابع را در x=2x = - 2 تعیین کنیم. مقدار 2- 2 در بازه اول قرار دارد که در آن، برای 4x1- 4 \le x \le - 1 مقدار f(x)=3x+5f ( x ) = 3 x + 5 را داریم. بنابراین، f(2)=3(2)+5=1f ( - 2 ) = 3 (- 2 ) + 5 = - 1.

یک معلم در حال اشاره به تخته ای با تابع چند ضابطه ای روی آن

مثالی از محاسبه تابع چند ضابطه ای

اگر f(x)f ( x ) به صورت زیر باشد، مقدار f(3)f ( 3) را به دست آورید.

f(x)={3x25x<2x2+12x<43x+1x4.\large f ( x ) = \begin {cases} 3 x - 2 & - 5 \leq x < 2 \\ x ^ 2 + 1 & 2 \leq x < 4 \\ - 3 x + 1 & x \geq4 \end {cases} .

حل: f(3)f ( 3 ) در بازه 2x<42 \le x < 4 قرار دارد که در آن، f(x)=x2+1f ( x ) = x ^ 2 + 1 است. بنابراین، f(3)=32+1=10f ( 3 ) = 3 ^ 2 + 1 = 10.

مثالی از پیوستگی تابع چند ضابطه ای

اگر تابع چند ضابطه ای ff به صورت زیر تعریف شده و پیوسته باشد، مقدار QQ را به دست آورید.

f(x)={3x+2x2x2Qx>2\large f ( x ) = \begin {cases} - 3 x + 2 & x \leq 2 \\ x^2 - Q & x > 2 \end {cases}

حل: در x=2x = 2، نمودار y=3x+2y = - 3 x + 2 در نقطه (2,4)( 2 , - 4 ) قرار دارد. وقتی Q=0Q = 0 و x=2x= 2 باشد، نمودار y=x2Qy = x ^ 2 - Q در نقطه (2,4)( 2 , 4 ) قرار دارد. بنابراین، باید منحنی سهمی را به اندازه 4+4=84 + 4 = 8 به پایین جابه‌جا کنیم تا نقاط منطبق شوند. در نتیجه، Q=8Q = 8 است.

رسم توابع چند ضابطه ای

برای رسم یک تابع چند ضابطه ای، تکه‌های مختلف را برای زیربازه‌ها رسم می‌کنیم. برای مثال، می‌خواهیم نمودار تابع زیر را رسم کنیم:

f(x)={2x+1x1x21<x24x>2.\large f ( x ) = \begin {cases} 2 x + 1 & x \leq - 1 \\ x ^ 2 & - 1 < x \leq 2 \\ 4 & x > 2 \end {cases} .

این منحنی چندتکه دارای سه بخش یا تکه و دو نقطه مرزی در x=1x = - 1 و x=2x = 2 است. تکه اول منحنی تابع خطی f(x)=2x+1f ( x ) = 2 x + 1 برای x1x \le - 1 است. با توجه به اینکه f(1)=2(1)+1=1f ( - 1 ) = 2 ( - 1 ) + 1 = - 1، نقطه‌ای توپر در (1,1)( - 1 , - 1 ) داریم. در ادامه، یک تابع درجه دوم f(x)=x2f ( x ) = x ^ 2 برای 1<x<2-1< x < 2 با نقاط مرزی 1- 1 و 22 داریم. با توجه به f(1)=(1)2=1f ( - 1 ) = ( - 1 ) ^ 2 = 1، یک نقطه توخالی در (1,1)( - 1 , 1 ) و f(2)=22=4f ( 2 ) = 2 ^ 2 = 4 داریم، به گونه‌ای که یک نقطه توپر در (2,4)( 2 , 4 ) خواهیم داشت.

تکه سوم تابع خطی افقی f(x)=4f ( x ) = 4 از x=2x = 2 تا بینهایت است. شکل زیر، مراحل رسم نمودار این تابع چند ضابطه ای را از چپ به راست نشان می‌دهد.

تابع چند ضابطه ای

مثال رسم تابع چند ضابطه ای

نمودار صحیح تابع زیر، کدام‌یک از شکل‌های زیر است؟

f(x)={2x+1x212x4x>2\large f ( x ) = \begin {cases} - 2 x + 1 & x \leq 2 \\ \frac { 1 } { 2 } x - 4 & x > 2 \end {cases}

توابع چند ضابطه ای

حل: در نمودار (الف) توابع به درستی رسم شده‌اند، اما نقطه مرزی به جای x=2x = 2 به اشتباه در x=0x = 0 قرار دارد. نمودار (ج) نیز نمودارهای صحیح دارد و نقطه مرزی صحیح است، اما نقطه باید یک نقطه توپر باشد، زیرا تابع اول شامل مقدار x=2x = 2 است. بنابراین، نمودار (ب) صحیح است.

آزمون تابع چند ضابطه ای

۱. تابع چند ضابطه ای را چگونه می توان با توجه به بازه های مختلف برای x در فرمول ریاضی نمایش داد؟

با ترکیب تمام ضابطه ها در یک عبارت ثابت بدون اشاره به بازه ها

با نوشتن هر ضابطه تابع همراه با بازه مربوط به x به صورت یک مجموعه قطعه ای

با استفاده از یک مقدار ثابت برای کل دامنه تابع

با نمایش تنها یکی از ضابطه ها و حذف بازه های دیگر

پاسخ تشریحی

در نمایش ریاضی تابع چند ضابطه ای، هر ضابطه تابع با بازه مربوط به x به طور مجزا و قطعه ای نوشته می شود. این روش باعث می شود مشخص شود که در هر بازه کدام رابطه باید استفاده شود.

۲. چگونه می‌توان تابع قدر مطلق |x| را به صورت تابع چند ضابطه ای نوشت و این فرم چه مفهومی برای رفتار تابع در بازه‌های x < 0 و x ≥ 0 دارد؟

در بازه x > 0 مقدار |x| همواره صفر است.

برای همه x‌ها مقدار |x| با x برابر است.

در بازه x < 0 ضابطه -x و در x ≥ 0 ضابطه x برای |x| قرار می‌گیرد.

قدر مطلق |x| هیچگاه به صورت تکه‌ای نمایش داده نمی‌شود.

پاسخ تشریحی

در بیان قدرمطلق |x| به صورت تابع چند ضابطه ای، اگر x منفی باشد، مقدار آن برابر با منفی x و اگر x مثبت یا صفر باشد، با خود x برابر است.

۳. برای مدل‌سازی هزینه تولید یک کارخانه با استفاده از تابع چند ضابطه ای که ابتدا هزینه ثابت و سپس هزینه به صورت خطی افزایش می‌یابد، چگونه باید تابع مناسب را انتخاب کرد؟

تعیین هزینه تولید صرفا با مشاهده نمودار بدون توجه به فرمول

استفاده از تابع نمایی برای مدل‌سازی همه مراحل هزینه تولید

بررسی داده‌ها و تقسیم بازه‌ها، سپس تعیین ضابطه ثابت و ضابطه خطی برای هر بازه

انتخاب تنها یک ضابطه برای کل بازه بدون توجه به تغییر رفتار هزینه

پاسخ تشریحی

برای یافتن تابع مناسب زمانی که هزینه تولید ابتدا ثابت و سپس خطی افزایش می‌یابد، باید ابتدا داده‌ها را بررسی و بازه‌ها را دقیق مشخص کرد. سپس برای هر بازه، ضابطه مناسب مانند ضابطه ثابت در بازه اول و ضابطه خطی در بازه دوم انتخاب می‌شود. گزینه‌هایی مثل «انتخاب تنها یک ضابطه برای کل بازه بدون توجه به تغییر رفتار هزینه» و یا «استفاده از تابع نمایی» از آنجا که رفتار هزینه را در بازه‌های متفاوت در نظر نمی‌گیرند، اشتباه‌اند. همچنین، «تعیین هزینه تولید صرفا با مشاهده نمودار» بدون توجه به ضابطه عددی به نتیجه دقیق نمی‌رسد. بنابراین، بررسی بازه‌ها و اختصاص ضابطه مناسب برای هر بازه رویکرد صحیح است.

بر اساس رای ۱۱۱ نفر
آیا این مطلب برای شما مفید بود؟
اگر پرسشی درباره این مطلب دارید، آن را با ما مطرح کنید.
منابع:
Brilliant
PDF
مطالب مرتبط
۴ دیدگاه برای «تابع چند ضابطه ای – به زبان ساده»

ببخشید استاد یک سوال بعضی جا ها هست که نقطه تو خالی و نقطه تو پر رو مشخص نمیکنن در اینجور جاها چطور بفهمیم برای دامنه ضابطه نقطه تو پر بزاریم یا تو خالی؟

باعرض سلام و احترام وادب :
محضر استاد و اندیشمند گرانقدر سلامتی و بهروزی جنابعالی را از درگاه ایزد یکتا خواستاریم ارائه مثال شما کلی انرژی به زندگیم آورد لطف حق یاورتان باد

خیلی ممنونم
واقعا کمک کرد

سلام.
خوشحالیم که این آموزش برایتان مفید بوده است.
شاد و پیروز باشید.

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *