حل مساله رنگ آمیزی گراف با الگوریتم پس گرد — به زبان ساده

۲۲۷۲ بازدید
آخرین به‌روزرسانی: ۱۰ تیر ۱۴۰۲
زمان مطالعه: ۶ دقیقه
دانلود PDF مقاله
حل مساله رنگ آمیزی گراف با الگوریتم پس گرد — به زبان سادهحل مساله رنگ آمیزی گراف با الگوریتم پس گرد — به زبان ساده

انواع گوناگونی از مسائل رنگ‌آمیزی گراف وجود دارد که مساله رنگ کردن راس‌های گراف، یکی از محبوب‌ترین و متداول‌ترین آن‌ها به شمار می‌آید. در این مساله، یک گراف غیر مستقیم و عدد m داده شده است. هدف رنگ کردن راس‌های گراف به صورتی است که هیچ دو راس مجاوری، دارای رنگ مشابه نباشند. m تعداد رنگ‌های داده شده است. باید توجه داشت که در اینجا منظور از رنگ‌آمیزی، تخصیص رنگ به راس‌های گراف است. برای حل مساله رنگ آمیزی گراف، الگوریتم‌های گوناگونی ارائه شده که «الگوریتم پس گرد» (Backtracking) و «حریصانه» (Greedy) از این جمله هستند. در این مطلب، هدف حل مساله رنگ آمیزی گراف با الگوریتم پس گرد است.

997696

تعریف مساله

تعداد m رنگ و یک گراف داده شده است. هدف رنگ کردن راس‌های این گراف به صورتی است که هیچ دو راس مجاوری دارای یک رنگ مشابه نباشند. ورودی و خروجی مساله، به طور دقیق به شرح زیر هستند.

ورودی:

  1. یک آرایه دو بعدی، یعنی گراف [graph[V][V که در آن، V تعداد یال‌ها در گراف را مشخص می‌کند و [graph[V][V نمایش ماتریس همسایگی گراف است. مقدار [graph[i][j در صورتی که یک یال مستقیم از i به j وجود داشته باشد برابر با یک، و در غیر این صورت، مقدار [graph[i][j برابر با ۰ است.
  2. عدد صحیح m، تعداد کل رنگ‌هایی است که می‌توان از آن‌ها استفاده کرد.

خروجی:

آرایه [color[V که باید حاوی اعدادی از ۱ تا m باشد. [color[i باید رنگ تخصیص یافته به i‌اُمین راس را نشان دهد. همچنین، در صورتی که نمی‌توان گراف را با m رنگ طبق شرط موجود رنگ‌آمیزی کرد، کد باید مقدار False را بازگرداند. در ادامه، تصویری از یک گراف داده شده که با m=3 رنگ (سفید، سبز، قرمز) رنگ‌آمیزی شده است.

حل مساله رنگ آمیزی گراف با الگوریتم پس گرد

الگوریتم ساده

الگوریتم ساده ارائه شده در زیر، همه پیکربندی‌های ممکن برای رنگ‌آمیزی گراف را که شروط داده شده در آن‌ها رعایت می‌شود، در خروجی چاپ می‌کند.

while there are untried conflagrations
{
generate the next configuration
if no adjacent vertices are colored with same color
{
print this configuration;
}
}

به تعداد Vm  پیکربندی مختلف از رنگ‌ها وجود دارد.

حل مساله رنگ آمیزی گراف با الگوریتم پس گرد

ایده اساسی آن است که رنگ‌ها یکی یکی به راس‌های مختلف اختصاص پیدا کنند. این کار با شروع از راس صفر (۰) آغاز می‌شود. پیش از تخصیص رنگ، امکان‌پذیری تخصیص رنگ بر اساس شرط داده شده بررسی می‌شود.

این کار، با در نظر گرفتن رنگ‌هایی که در حال حاضر به راس‌های همسایه تخصیص پیدا کرده‌اند، صورت می‌پذیرد. اگر الگوریتم تشخیص دهد که تخصیص یک رنگ مشخص در شرط داده شده صدق می‌کند، تخصیص رنگ به عنوان بخشی از راهکار انجام می‌شود. اگر رنگی برای یک راس مشخص پیدا نشود که در شرط مذکور صدق کند، پس‌گرد انجام و پیغام خطای False صادر می‌شود.

کد راه حل مساله رنگ آمیزی گراف در ++C/C

کد راه حل مساله رنگ آمیزی گراف در جاوا

1/* Java program for solution of M Coloring problem 
2   using backtracking */
3public class mColoringProblem { 
4    final int V = 4; 
5    int color[]; 
6  
7    /* A utility function to check if the current 
8       color assignment is safe for vertex v */
9    boolean isSafe(int v, int graph[][], int color[], 
10                   int c) 
11    { 
12        for (int i = 0; i < V; i++) 
13            if (graph[v][i] == 1 && c == color[i]) 
14                return false; 
15        return true; 
16    } 
17  
18    /* A recursive utility function to solve m 
19       coloring  problem */
20    boolean graphColoringUtil(int graph[][], int m, 
21                              int color[], int v) 
22    { 
23        /* base case: If all vertices are assigned 
24           a color then return true */
25        if (v == V) 
26            return true; 
27  
28        /* Consider this vertex v and try different 
29           colors */
30        for (int c = 1; c <= m; c++) 
31        { 
32            /* Check if assignment of color c to v 
33               is fine*/
34            if (isSafe(v, graph, color, c)) 
35            { 
36                color[v] = c; 
37  
38                /* recur to assign colors to rest 
39                   of the vertices */
40                if (graphColoringUtil(graph, m, 
41                                      color, v + 1)) 
42                    return true; 
43  
44                /* If assigning color c doesn't lead 
45                   to a solution then remove it */
46                color[v] = 0; 
47            } 
48        } 
49  
50        /* If no color can be assigned to this vertex 
51           then return false */
52        return false; 
53    } 
54  
55    /* This function solves the m Coloring problem using 
56       Backtracking. It mainly uses graphColoringUtil() 
57       to solve the problem. It returns false if the m 
58       colors cannot be assigned, otherwise return true 
59       and  prints assignments of colors to all vertices. 
60       Please note that there  may be more than one 
61       solutions, this function prints one of the 
62       feasible solutions.*/
63    boolean graphColoring(int graph[][], int m) 
64    { 
65        // Initialize all color values as 0. This 
66        // initialization is needed correct functioning 
67        // of isSafe() 
68        color = new int[V]; 
69        for (int i = 0; i < V; i++) 
70            color[i] = 0; 
71  
72        // Call graphColoringUtil() for vertex 0 
73        if (!graphColoringUtil(graph, m, color, 0)) 
74        { 
75            System.out.println("Solution does not exist"); 
76            return false; 
77        } 
78  
79        // Print the solution 
80        printSolution(color); 
81        return true; 
82    } 
83  
84    /* A utility function to print solution */
85    void printSolution(int color[]) 
86    { 
87        System.out.println("Solution Exists: Following" + 
88                           " are the assigned colors"); 
89        for (int i = 0; i < V; i++) 
90            System.out.print(" " + color[i] + " "); 
91        System.out.println(); 
92    } 
93  
94    // driver program to test above function 
95    public static void main(String args[]) 
96    { 
97        mColoringProblem Coloring = new mColoringProblem(); 
98        /* Create following graph and test whether it is 
99           3 colorable 
100          (3)---(2) 
101           |   / | 
102           |  /  | 
103           | /   | 
104          (0)---(1) 
105        */
106        int graph[][] = {{0, 1, 1, 1}, 
107            {1, 0, 1, 0}, 
108            {1, 1, 0, 1}, 
109            {1, 0, 1, 0}, 
110        }; 
111        int m = 3; // Number of colors 
112        Coloring.graphColoring(graph, m); 
113    } 
114} 
115// This code is contributed by Abhishek Shankhadhar 

کد راه حل مساله رنگ آمیزی گراف در پایتون

1# Python program for solution of M Coloring  
2# problem using backtracking 
3  
4class Graph(): 
5  
6    def __init__(self, vertices): 
7        self.V = vertices 
8        self.graph = [[0 for column in range(vertices)]\ 
9                              for row in range(vertices)] 
10  
11    # A utility function to check if the current color assignment 
12    # is safe for vertex v 
13    def isSafe(self, v, colour, c): 
14        for i in range(self.V): 
15            if self.graph[v][i] == 1 and colour[i] == c: 
16                return False
17        return True
18      
19    # A recursive utility function to solve m 
20    # coloring  problem 
21    def graphColourUtil(self, m, colour, v): 
22        if v == self.V: 
23            return True
24  
25        for c in range(1, m+1): 
26            if self.isSafe(v, colour, c) == True: 
27                colour[v] = c 
28                if self.graphColourUtil(m, colour, v+1) == True: 
29                    return True
30                colour[v] = 0
31  
32    def graphColouring(self, m): 
33        colour = [0] * self.V 
34        if self.graphColourUtil(m, colour, 0) == False: 
35            return False
36  
37        # Print the solution 
38        print "Solution exist and Following are the assigned colours:"
39        for c in colour: 
40            print c, 
41        return True
42  
43# Driver Code 
44g  = Graph(4) 
45g.graph = [[0,1,1,1], [1,0,1,0], [1,1,0,1], [1,0,1,0]] 
46m=3
47g.graphColouring(m) 
48  
49# This code is contributed by Divyanshu Mehta 

خروجی

Solution Exists: Following are the assigned colors
1 2 3 2

اگر نوشته بالا برای شما مفید بوده است، آموزش‌های زیر نیز به شما پیشنهاد می‌شوند:

^^

بر اساس رای ۵ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
GeeksforGeeks
۱ دیدگاه برای «حل مساله رنگ آمیزی گراف با الگوریتم پس گرد — به زبان ساده»

پیچیدگی زمانی این الگوریتم چیست؟

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *