ریاضی، علوم پایه ۳۷۱۹ بازدید

در این آموزش از مجموعه مطالب ریاضی مجله فرادرس، با یکی از مفاهیم مهم در جبر و ریاضیات آشنا می‌شویم که احتمالاً نام آن را بسیار شنیده‌اید. این مفهوم، عبارت جبری است که در این آموزش درباره آن بحث می‌کنیم.

فهرست مطالب این نوشته

عبارت‌های جبری عبارت‌هایی هستند که با انجام عملیاتی مانند جمع، تفریق، ضرب، تقسیم و غیره بین متغیرها حاصل می‌شوند. برای مثال، فرض کنید احمد و حسن با چوب کبریت بازی می‌کنند و می‌خواهند با استفاده از آن‌ها الگوهای عددی بسازند. احمد ۴ چوب کبریت برداشته و عددی را می‌سازد. حسن ۳ چوب کبریت دیگر اضافه کرده تا از همان عدد دو تا را تشکیل دهد. آن‌ها متوجه می‌شوند که می‌توانند به اضافه کردن 3 چوب کبریت در هر دور ادامه دهند تا یک عدد متشابه اضافه بسازند. از این بازی، آن‌ها به این نتیجه می‌رسند که به طور کلی به $$4+3(n-1)$$ چوب کبریت نیاز دارند تا الگویی با $$n$$ عدد را بسازند. در اینجا $$4 + 3 (n-1)$$ یک عبارت جبری نامیده می‌شود. همان‌طور که می‌بینیم، $$n$$ می‌تواند تغییر کند. در ادامه، با مفهوم ریاضی عبارت جبری آشنا می‌شویم.

عبارت جبری چیست ؟

یک عبارت جبری (Algebraic Expression) یا یک عبارت متغیر ترکیبی از جمله‌ها (Terms) با عملیاتی مانند جمع، تفریق، ضرب، تقسیم و غیره است. برای مثال، عبارت $$5x + 7$$ را در نظر بگیرید. عبارت $$5x + 7$$ نمونه‌ای از عبارت جبری است. یک عبارت جبری اجزای مختلفی دارد. در ادامه، این اجزا را معرفی خواهیم کرد.

اجزای یک عبارت جبری

یک عبارت جبری سه بخش دارد: متغیر، ثابت و ضریب. شکل زیر به‌خوبی این اجزا را نشان می‌دهد.

عبارت جبری چیست

در ریاضیات، نمادی که مقدار ثابتی ندارد، متغیر (Variable) نامیده می‌شود. متغیر هر مقداری می‌تواند داشته باشد. در مثال بالا که راجع به چوب کبریت بیان کردیم، $$n$$ یک متغیر است و در این مثال می‌تواند مقادیر $$ 1 $$ و $$2$$ و $$3$$ و… را بگیرد. برخی از نمادهای رایجی که به‌عنوان متغیر در ریاضی استفاده می‌شوند، $$ a $$ و $$ b $$ و $$ x $$ و $$y$$ و $$ z $$ و $$m$$ و $$ n $$ و امثال این‌هاست.

از طرف دیگر، به نمادی که مقدار عددی ثابتی دارد، ثابت (Constant) می‌گویند. همه اعداد ثابت هستند. چند مثال از ثابت‌ها عبارتند از $$3$$ و $$6$$ و $$- \frac 12 $$ و $$\sqrt 3 $$ و… . یک جمله یک متغیر به تنهایی یا یک ثابت به تنهایی یا ترکیبی از ضرب و تقسیم متغیرها و ثابت‌ها است. برای مثال، $$ 3 x ^ 2 $$ و $$ 3 x ^ 2 $$ و $$ – \frac {2y}3$$ و $$\sqrt 5 $$ و امثال این‌ها جمله هستند. جمله‌ها با علامت جمع یا تفریق از هم جدا می‌شوند. اعدادی که در متغیرها ضرب می‌شوند، ضریب (Coefficient) نام دارند.

برای آشنایی با مباحث ریاضیات مدرسه، پیشنهاد می‌کنیم به مجموعه فیلم‌های آموزش‌های دروس دبیرستان و پیش دانشگاهی فرادرس مراجعه کنید که لینک آن در ادامه آورده شده است.

  • برای مشاهده مجموعه فیلم‌های آموزش‌های دروس دبیرستان و پیش دانشگاهی + اینجا کلیک کنید.

تفاوت عبارت جبری و معادله چیست؟

معادله یک گزاره ریاضی است که تساوی دو عبارت را بیان می‌کند و این تساوی با علامت “=” نمایش داده می‌شود.

برای مثال، جمله زیر یک عبارت است:

$$ \large x ^ 2 + 1 $$

و جمله‌ای که در پایین آمده است، یک معادله را نشان می‌دهد:

$$ \large x ^ 2 + 1 = 5 $$

برای آشنایی بیشتر با معادله‌ها، به آموزش‌های زیر مراجعه کنید:

جملات متشابه و غیرمتشابه

یکی از مفاهیم مهم در عبارت‌های جبری که باید با آن آشنا باشیم، جملات متشابه و غیرمتشابه هستند. جملات متشابه جملاتی هستند که عوامل (متغیرهای) جبری یکسانی دارند. در طرف مقابل، جملات غیرمتشابه جملاتی هستند که عوامل جبری متفاوتی دارند. برای مثال، در عبارت جبری $$ 2xy – 3x + 5xy – 4 $$، جملات $$ 2 x y $$ و $$ 5 x y $$ جملات متشابه هستند، زیرا هر دو دارای عامل مشترک $$ x y $$ هستند. اما دو جمله $$ 2 x y $$ و $$ – 3 x $$ غیرمتشابه هستند، زیرا عوامل مشترکی ندارند و عوامل آن‌ها به‌ترتیب $$ x y $$ و $$ x $$ است.

از این مفاهیم در فاکتورگیری و تجزیه عبارت‌های جبری استفاده فراوانی می‌شود.

انواع عبارت‌های جبری

عبارت‌های جبری را می‌توان بر اساس موارد مختلفی دسته‌بندی کرد که در ادامه به مهم‌ترین آن‌ها اشاره می‌کنیم.

انواع عبارت‌های جبری بر اساس تعداد جملات

بر اساس تعداد جملات، سه نوع عبارت جبری وجود دارد:

  • عبارت تک‌جمله‌ای: عبارت تک‌جمله‌ای یک عبارت جبری است که فقط یک جمله دارد. برای مثال، $$ 3 x ^ 4 $$ و $$ 3 x y $$ و $$ 3 x $$ و $$ 8 y $$ عبارت تک‌جمله‌ای هستند، زیرا تنها یک جمله دارند.
  • عبارت دوجمله‌ای: عبارت دوجمله‌ای نوعی عبارت جبری است که دو جمله دارد. برای مثال، $$ 5 x y + 8 $$ و $$ x y z + x ^ 3 $$ عبارت دوجمله‌ای هستند.
  • عبارت چندجمله‌ای: در حالت کلی، یک عبارت با بیش از دو جمله را عبارت چندجمله‌ای می‌نامیم. برای مثال، $$ ax + b y + c a $$ و $$x^ 3 + 2 x + 3 $$ چندجمله‌ای هستند.

نکته: برای سادگی، در ادامه، گاهی کلمه «جبری» را حذف می‌کنیم و هر جا کلمه عبارت را به‌کار ببریم، منظورمان عبارت جبری است.

انواع عبارت‌های جبری بر اساس نوع جمله

به غیر از انواع عبارات تک‌جمله‌ای، دوجمله‌ای و چندجمله‌ای، یک عبارت جبری را می‌توان به دو نوع دیگر نیز طبقه‌بندی کرد که عبارت‌اند از:

  • عبارت عددی: یک عبارت عددی از اعداد و عملیات مختلف ریاضی تشکیل شده است، اما شامل هیچ متغیری نیست. برخی از مثال‌های عبارات عددی $$ 10 + 15 $$ و $$ 15 \div 2 $$ و غیره هستند.
  • عبارت متغیر: عبارت متغیر عبارتی است که شامل متغیرها به همراه اعداد و عملیات ریاضی مختلف برای تعریف یک عبارت است. چند نمونه از عبارت متغیر عبارت‌اند از $$ 4x + y $$ و $$5ab + 33$$.

نکته: با اینکه عبارت عددی یک عبارت جبری است، ام معمولاً منظورمان از عبارت جبری، یک عبارت جبری دارای متغیر است.

انواع عبارت‌های جبری براساس تعداد متغیرها

بر اساس تعداد متغیرها، عبارت‌های جبری را می‌توان به دسته‌های زیر تقسیم کرد:

  • عبارت جبری تک‌متغیره: این عبارت‌های جبری تنها یک متغیر دارند. برای مثال، $$ 5 x $$ و $$ x + 2 $$ و $$ y – 9 $$ و… .
  • عبارت جبری دومتغیره: این عبارات جبری، همان‌طور که از نامشان پیداست، دو متغیر دارند. برای مثال، $$ 7 x y $$ و $$5 x ^ 2 + z $$ و $$ 3 x y $$ و $$12 y ^ 2 z $$ و $$ y ^ 2 + 3 x  z $$ و $$ 3 x – 8 y + 9 $$ و… .
  • عبارت جبری سه‌متغیره: عبارت جبری سه‌متغیره دارای سه متغیر است. برای مثال، $$ 6 x y z $$ و $$ 5 x ^  3 + 3 y + z $$ و… .
  • عبارت جبری با متغیرهای بیشتر: نوعی از عبارت‌های جبری نیز بیش از سه متغیر دارند.

عملیات ریاضی روی عبارت‌های جبری

روی عبارت‌های جبری می‌توان عملیات حسابی مختلف را انجام داد. در ادامه، این عملیات را معرفی می‌کنیم.

جمع عبارت‌های جبری

در جمع عبارت‌های جبری، فقط جملات متشابه آن‌ها با هم جمع می‌شود. در این حالت، ضرایب این جملات با هم جمع جبری می‌شود. اما جملات غیرمتشابه را به همان شکلی که هستند و با همان علامتی که دارند، بدون تغییر می‌گذاریم.

برای مثال، جمع دو عبارت $$ 3 x + 5 y + z + 7 $$ و $$ 4 x + 9 y + 11 $$ به‌صورت زیر خواد بود:

$$ \large 7 x + 14 y + z + 18 $$

در عبارت اخیر، جملات متشابه را با هم جمع جبری کرده‌ایم.

تفریق عبارت‌های جبری

برای تفریق عبارت‌های جبری کافی است عبارت اول را با قرینه عبارت دوم جمع کنیم. در این مورد نیز، جملات متشابه از هم تفریق می‌شوند. برای مثال، فرض کنید می‌خواهیم $$ – 2{y^2} + \frac{1}{2}y – 3 $$ را از $$7{y^2} – 2y + 10 $$ کم کنیم. بنابراین، می‌نویسیم:

$$ \large ( 7 { y ^ 2 } – 2 y + 1 0 ) – \left ( { – 2 { y ^ 2 } + \frac { 1 } { 2 } y + 3 } \right) $$

که جواب آن به‌صورت زیر خواهد بود:

$$ \large \begin {align} & = 7 { y ^ 2 } – 2 y + 1 0 + 2 { y ^ 2 } – \frac { 1 } { 2 } y + 3 \\ & = 7 { y ^ 2 } + 2 { y ^ 2 } – 2 y – \frac { 1 } { 2 } y + 1 0 + 3 \\
& = ( 7 + 2 ) { y ^ 2 } + \left ( { – 2 – \frac { 1 } { 2 } } \right ) y + 13 \\
& = 9 { y ^ 2 } – \frac { 5 } { 2 } y + 1 3
\end {align} $$

ضرب عبارت‌های جبری

برای ضرب عبارت‌های جبری، باید جملات را تک‌تک‌در هم ضرب کنیم. برای مثال، فرض کنید دو عبارت جبری $$ x + 1 $$ و $$ y – 2 $$ را داریم. می‌خواهیم این دو عبارت را در هم ضرب کنیم. این‌گونه عمل می‌کنیم:

$$ \large \begin {align} ( x + 1 ) ( y – 2 ) & = (x \times y) + (x \times -2) + (1 \times y )+(1 \times -2 ) \\
& = x y – 2x +y-2
\end {align} $$

یا ضرب دو عبارت $$ x y $$ و $$ y $$ برابر است با

$$ \large \begin {align}
x y \times y = x y ^ 2
\end {align} $$

تقسیم عبارت‌های جبری

تقسیم عبارت‌های جبری را نیز می‌توان به روش‌های مختلفی مانند روش مستقیم یا استفاده از اتحادهای جبری انجام داد. برای مثال، تقسیم زیر با کمک اتحادها به‌صورت زیر انجام می‌شود:

$$ \large \begin {align} \frac { { { x ^ 3 } – 8 } } { { x – 2 } } & = \frac { { { { ( x ) } ^ 3 } – { { ( 2 ) } ^ 3 } } } { { x – 2 } } = \frac { { ( x – 2 ) \left [ { { { ( x ) } ^ 2 } + x \times 2 + { { ( 2 ) } ^ 2 } } \right ] }} { { x – 2 } } \\
& = { x ^ 2 } + 2 x + 4
\end {align} $$

برای آشنایی کامل با تقسیم عبارت‌های جبری، پیشنهاد می‌کنیم به آموزش «تقسیم چند جمله ای ها — به زبان ساده + فیلم آموزش رایگان» مراجعه کنید.

ساده سازی عبارت‌های جبری

ساده‌سازی عبارت‌های جبری یعنی اینکه یک عبارت جبری را به‌گونه‌ای ساده کنیم که جملات متشابه در آن وجود نداشته باشند. برای ساده‌سازی عبارات جبری، جملات متشابه را با هم جمع یا تفریق می‌کنیم و اگر ضرب عبارت‌ها وجود داشته باشد، آن را انجام می‌دهیم. در نهایت، پس از ساده‌سازی، باید یک عبارت داشته باشیم که از مجموع جملات غیرمتشابه تشکیل شده است.

برای مثال، فرض کنید می‌خواهیم عبارت زیر را ساده کنیم:

$$ \large x ( xy + 1 )$$

با انجام ضرب، این عبارت ساده می‌شود و خواهیم داشت:

$$ \large x ( xy + 1 ) = ( x \times x y ) + ( x \times 1 ) = x ^ 2 y + x $$

یا عبارت زیر را در نظر بگیرید:

$$ \large 10x y – 2 x ( 3x + 6 y ) $$

ابتدا ضرب را انجام می‌دهیم، سپس جملات متشابه را با هم جمع می‌کنیم:‌

$$ \large 10x y – 2 x ( 3x + 6 y )\\
\large = 10 x y – 6 x ^ 2 – 12 x y \\
\large = – 6 x ^ 2 – 2 x y $$

تجزیه عبارت‌های جبری

وقتی می‌گوییم یک عبارت جبری را تجزیه کنیم، منظور این است که آن عبارت را که به‌‌صورت مجموع چند جمله بیان شده، به‌شکل حاصل‌ضرب چندجمله‌ای‌ها بنویسیم. برای مثال، عبارت جبری ساده $$ 2 x ^ 2 +2 x $$ را در نظر بگیرید. با فاکتور گرفتن از $$ 2 x $$، این عبارت ساده را می‌توان به‌صورت زیر نوشت:

$$ \large 2 x ^ 2 + 2 x = 2 x (x + 1 ) $$

می‌بینیم که یک عبارت جبری که به‌صورت مجموع جملات جبری بود، به‌شکل ضرب دو چندجمله‌ای نوشته شده است.

اما علاوه بر موارد ساده‌ای مانند فاکتورگیری، اتحادها نقش بسیار مهمی در تجزیه عبارت‌های جبری دارند. برای مثال، عبارت جبری $$ x ^ 2 + 2 xy + y^2 $$ با کمک اتحادها (در ادامه مهم‌ترینشان را معرفی می‌کنیم)‌ به‌صورت زیر تجزیه می‌شود:

$$ \large x ^ 2 + 2 xy + y^2 = (x + y) ^ 2 =(x + y) (x + y )$$

در تجزیه عبارت های جبری یا همان چندجمله‌ای‌ها معمولاً از اتحادها و همچنین، فاکتورگیری کمک می‌گیریم.

گاهی شکل ظاهری چندجمله‌ای دقیقاً مانند اتحادهای معروف است. در این صورت به راحتی می‌توانیم از اتحادها استفاده کرده و تجزیه عبارت‌های جبری را به خوبی انجام دهیم. البته گاهی باید از تکنیک‌های ریاضی استفاده کنیم، تکنیک‌هایی مانند کم و زیاد کردن جملات جدید، شکستن جملات موجود و… . برای تجزیه آسان عبارت های جبری می‌توانیم از فاکتورگیری نیز استفاده کنیم. در مثال‌هایی که در ادامه بیان می‌کنیم، به این موارد اشاره خواهیم کرد.

مهم‌ترین اتحادهایی که از آن‌ها در تجزیه عبارت های جبری استفاده می‌شود، عبارت‌اند از:

  • اتحاد مربع دوجمله‌ای:

$$ \large  { \begin {align}
a ^ 2 + 2 a b + b ^ 2 & = (a + b ) ( a + b )= ( a + b ) ^ 2 \\
a ^ 2 – 2 a b + b ^ 2 & = (a – b ) ( a – b )= ( a – b ) ^ 2
\end {align} } $$

  • اتحاد مربع سه‌جمله‌ای:

$$ \large  { \begin {align}
a ^ 2 + b ^ 2 + c ^ 2 + 2 a b + 2ac + 2 b c & = ( a + b + c ) ^ 2
\end {align} } $$

$$ \large  { \begin {align}
a ^ 3 + 3 a ^ 2 b + 3 a b ^ 2 + b ^ 3 & = ( a + b ) ^ 3 \\
a ^ 3 – 3 a ^ 2 b + 3 a b ^ 2 – b ^ 3 & = ( a – b ) ^ 3
\end {align} } $$

$$ \large  { \begin {align}
a ^ 3 + b ^ 3 & = ( a + b ) (a ^ 2 – a b + b ^ 2 ) \\
a ^ 3 – b ^ 3 & = ( a – b ) (a ^ 2 + a b + b ^ 2 )
\end {align} } $$

$$ \large  { \begin {align}
a ^ 2 – b ^ 2 = ( a + b ) (a – b )
\end {align} } $$

$$ \large  { \begin {align}
x ^ 2 + ( a +b ) x + ab = ( x + a ) ( x + b)
\end {align} } $$

  • اتحاد بسط دوجمله‌ای نیوتن:

$$ \large  { \begin {align}
\begin {array} {l}
a ^ { n } + \left ( \begin {array} { l }
n \\ 1
\end {array} \right ) a ^ { n – 1 } b + \left ( \begin {array} { l }
n \\ 2
\end {array} \right ) a ^ { n – 2 } b ^ { 2 } + \ldots + \left ( \begin {array} { l }
n \\ n
\end {array} \right ) b ^ { n } = ( a + b ) ^ { n } \\
a ^ { n } – \left ( \begin {array} { l }
n \\ 1
\end {array} \right ) a ^ { n – 1 } b + \left ( \begin {array} { l }
n \\ 2
\end {array} \right ) a ^ { n – 2 } b ^ { 2 } – \ldots + ( – 1 ) ^ { n } b ^ { n } = ( a – b ) ^ { n }
\end {array}
\end {align} } $$

  • اتحاد لاگرانژ:

$$ \large  { \begin {align}
( a x + b y ) ^ 2 + ( a y – b x ) ^ 2 = (a ^ 2 + b ^ 2 ) (x ^ 2 + y ^ 2 )
\end {align} } $$

  • اتحاد اویلر:

$$ \large  { \begin {align}
a ^ 3 + b ^ 3 + c ^ 3 – 3 a b c = ( a + b + c ) (a ^ 2 + b ^ 2 + c ^ 2 – a b – a c – b c )
\end {align} } $$

برای تجزیه عبارت‌های جبری، ابتدا عبارت را به دقت بررسی کنید و به دنبال اشتراک در جمله‌ها باشید تا در صورت امکان از فاکتورگیری استفاده کنید. مثلاً در عبارت $$xy + xy^2 – 8xy+x^2y^2 $$ اگر کمی دقت کنیم، می‌بینیم که $$xy$$ در همه جملات متشابه است و می‌توان عبارت را به صورت $$ xy ( 1 + y-8+xy)$$ نوشت.

نکته دیگر که بسیار به تجزیه عبارت های جبری کمک می‌کند، استفاده از اتحادها است. به همین دلیل، بهتر است همه اتحادهای مهم را به خاطر بسپارید و عبارت جبری را از جنبه اتحادها بررسی کنید.

حل معادلات جبری

هدف از حل یک معادله جبری که از عبارت‌های جبری تشکیل شده است، یافتن متغیر مجهول است. هنگامی که دو عبارت برابر می‌شوند، یک معادله را تشکیل می‌دهند، و بنابراین، حل آن برای جملات مجهول آسان‌تر می‌شود.

برای حل یک معادله، متغیرها را در یک طرف و ثابت‌ها را در طرف دیگر قرار دهید. می‌توانید متغیرها را با به کار بردن عملیات حسابی مانند جمع، تفریق، ضرب، تقسیم، جذر، ریشه مکعب و غیره جدا کنید.

یک عبارت جبری را می‌توان همواره به طرف دیگر تساوی انتقال داد، به شرطی که علامت آن را قرینه کنیم. این بدان معناست که می‌توانیم معادله را با تعویض سمت چپ تساوی با سمت راست تساوی بازنویسی کنیم.

برای مثال، می‌خواهیم مقدار $$ x $$ را از معادله زیر بیابیم:

$$ \large 5 x + 10 = 50 $$

معادله‌ای که داریم، $$5x + 10 = 50$$ است. برای حل معادله، متغیرها و ثابت‌ها را جدا می‌کنیم. می‌توانید متغیر را در سمت چپ تساوی و ثابت‌ها را در سمت راست تساوی قرار دهیم:

$$ \large 5x = 50-10 $$

سمت راست را ساده می‌کنیم:

$$ \large 5x = 40 $$

دو طرف را بر ضریب متغیر تقسیم می‌کنیم:

$$ \large x = \frac {40} 5 = 8 $$

بنابراین مقدار $$x$$ برابر $$ 8 $$ است.

مقدار عددی عبارت جبری

مقدار عددی عبارت جبری یعنی اینکه به‌جای متغیرها عدد قرار دهیم و مقدار عبارت را حساب کنیم. برای مثال، فرض کنید عبارت $$ x + 2 $$ را داریم. به‌ازای $$ x = 3 $$، مقدار عددی این عبارت برابر با $$ 3 + 2 = 5 $$ است.

مثال‌های عبارت جبری

در این بخش، مثال‌های متنوعی را از عبارت‌های جبری بررسی می‌کنیم.

مثال اول عبارت جبری

آیا $$ 7 $$ یک عبارت جبری است؟

حل: بله، $$ 7 $$ یک عبارت جبری است. فرض کنید متغیر فرضی $$ x $$ را داشته‌ایم. در این صورت، $$ 7 $$ را می‌توان به‌صورت زیر بیان کرد:

$$ \large 7 = 7 \times x ^ 0 + 0 $$

در مثالی دیگر می‌توان $$ 7 $$ به شکل زیر بیان کرد.

$$ \large 7 = 0 \times x + 7 $$

مثال دوم عبارت جبری

آیا عبارت‌های جبری چندجمله‌ای هستند؟

جواب: خیر، همه عبارات جبری چند‌جمله‌ای نیستند. اما همه چند‌جمله‌ای‌ها عبارت‌های جبری هستند. تفاوت این است که چندجمله‌ای‌ها فقط شامل متغیرها و ضرایب با عملیات ریاضی (جمع، تفریق و ضرب) می‌شوند، اما عبارات جبری شامل توان‌های گنگ نیز می‌شوند. همچنین، چندجمله‌ای‌ها توابع پیوسته‌ای هستند (مثلاً $$ x ^ 2 + 2 x + 1 $$)، اما عبارت جبری ممکن است گاهی اوقات پیوسته نباشد (به عنوان مثال $$\frac{1}{x-1}$$ در $$ x = 1 $$ پیوسته نیست).

مثال سوم عبارت جبری

عبارت جبری زیر را ساده کنید:

$$ \large ( 2 – x ) ( 2 + x ) $$

حل: جملات را تک‌تک در هم ضرب می‌کنیم و خواهیم داشت:

$$ \large \begin {align}
( 2 – x ) ( 2 + x ) & = (2 \times 2 ) + (2 \times x ) + (- x \times 2 ) + (- x \times x ) \\
& = 4 + 2 x – 2 x – x ^ 2 \\ & = 4 – x ^ 2
\end {align} $$

مثال چهارم عبارت جبری

مجموع سه عدد زوج متوالی $$ 126 $$ است. این اعداد را به‌دست آورید.

حل: سه عدد را به‌شکل عبارت‌های جبری در نظر می‌گیریم: عدد نخست: $$ x $$، عدد دوم $$ x + 2 $$ و عدد سوم: $$ x + 4 $$.

جمع این سه عدد برابر است با

$$ \large
\begin {align}
x + x + 2 + x + 4 & = 126 \\
3 x + 6 & = 126 \\
3x &= 126 – 6 = 120 \\
x & = \frac { 120 } 3 = 40
\end {align}
$$

بنابراین، این اعداد عبارت‌اند از $$ 40 $$ و $$ 42 $$ و $$ 44 $$.

مثال پنجم عبارت جبری

صحیح و غلط بودن موارد زیر را مشخص کنید:

  1. ضریب عددی $$ \frac a 4 $$ عدد $$ 4 $$ است.
  2. دو تک‌جمله‌ای $$ 2 x $$ و $$ x ^ 2 $$ متشابه هستند.
  3. دو جمله که پیکربندی متغیرهای آن‌ها با هم یکسان باشد، متشابه هستند.
  4. ضریب عددی جمله $$ x y $$ عدد $$ 1 $$ است.

جواب: ۱) غلط، ۲) غلط، ۳) صحیح، ۴) صحیح.

مثال ششم عبارت جبری

عبارت‌های $$ 5{x^2} – 7x + 3 $$ و $$ – 8{x^2} + 2x – 5 $$ و $$7{x^2} – x – 2 $$ را با هم جمع کنید.

حل: جواب به‌صورت زیر است:

$$ \large \begin {aligned}
& = \left ( 5 x ^ { 2 } – 7 x + 3 \right ) + \left ( – 8 x ^ { 2 } + 2 x – 5 \right ) + \left ( 7 x ^ { 2 } – x – 2 \right ) \\
& = 5 x ^ { 2 } – 8 x ^ { 2 } + 7 x ^ { 2 } – 7 x + 2 x – x + 3 – 5 – 2 \\
& = ( 5 – 8 + 7 ) x ^ { 2 } + ( – 7 + 2 – 1 ) x + ( 3 – 5 – 2 ) \\
& = 4 x ^ { 2 } – 6 x – 4
\end {aligned} $$

مثال هفتم عبارت جبری

عبارت $$(2{x^2} – 5x + 7) $$ را از $$(3{x^2} + 4x – 6) $$ کم کنید.

حل: جواب به‌صورت زیر است:

$$ \large \begin {aligned}
( 3 { x ^ 2 } + 4 x – 6 ) – ( 2 { x ^ 2 } – 5 x + 7 )
& = 3 { x ^ 2 } + 4 x – 6 – 2 { x ^ 2 } + 5 x – 7 \\
& = { x ^ 2 } + 9 x – 1 3
\end {aligned} $$

مثال هشتم عبارت جبری

عبارت جبری زیر را ساده کنید:

$$ \large 12{m^2} – 9m + 5m – 4{m^2} – 7m + 10 $$

حل: این عبارت، با توجه به آنچه گفتیم، به‌صورت زیر ساده می‌شود:

$$ \large \begin {aligned}
& = ( 1 2 – 4 ) { m ^ 2 } + ( 5 – 9 – 7 ) m + 1 0 \\
& = 8 { m ^ 2 } + ( – 4 – \, \, – 7 ) m + 1 0 \\
& = 8 { m ^ 2 } + ( – 1 1 ) m + 1 0 \\
& = 8 { m ^ 2 } – 1 1 m + 1 0
\end {aligned} $$

مثال نهم عبارت جبری

سه عبارت $$ – 8a{b^2}c $$ و $$ 3{a^2}b $$ و $$ – \frac{1}{6} $$ را در هم ضرب کنید.

حل: با ضرب تک‌تک‌ جملات در هم، خواهیم داشت:

$$ \large \begin {aligned}
& \left ( { – 8 \times 3 \times \frac { { – 1 } } { 6 } } \right ) \times ( 3 { a ^ 2 } b ) \times \left ( { – \frac { 1 } { 6 } } \right )
\\ & = \left ( { – 8 \times 3 \times \frac { { – 1 }} { 6 } } \right ) \times ( a \times { a ^ 2 } \times { b ^ 2 } \times b \times c ) \\
& = 4 { a ^ { ( 1 + 2 ) } } \, \times { b ^ { ( 2 + 1 ) } } \times c = 4 { a ^ 3 } { b ^ 3 } c
\end {aligned} $$

مثال دهم عبارت جبری

مقدار عددی عبارت زیر را به‌ازای $$ x = 3 $$ و $$ y = – 1 $$ محاسبه کنید.

$$ \large 2 x ^ 2 – 2 x y $$

حل: مقادیر $$ x = 3 $$ و $$ y = – 1 $$ را در عبارت قرار می‌دهیم و خواهیم داشت:

$$ \large \begin {align}
2 x ^ 2 – 2 x y = 2 \times 3 ^ 2 – 2 \times 3 \times (-1) = 18 + 6 = 24
\end {align} $$

مثال یازدهم عبارت جبری

عبارت جبری زیر را تجزیه کنید:

$$ \large 6 x ^ 2 – 10 x y $$

حل: با فاکتورگیری از $$ 2 x $$،‌ این عبارت به‌صورت زیر تجزیه می‌شود:

$$ \large 6 x ^ 2 – 10 x y = 2 x ( 3 x – 5 y ) $$

مثال دوازدهم عبارت جبری

عبارت جبری  $$ 3 ( 4 x + 1 ) + 5( 3 x + 6 ) $$ را ساده کنید.

حل: ابتدا ضرب‌ها را انجام می‌دهیم، سپس جملات متشابه را با هم جمع می‌کنیم:

$$ \large 3 ( 4 x + 1 ) + 5( 3 x + 6 ) \\
\large = 1 2 x + 3 + 1 5 x + 3 0 \\ \large = 2 7 x + 3 3 $$

معرفی فیلم آموزش ریاضی و آمار (۱) – پایه دهم علوم انسانی

آموزش ریاضی و آمار (۱) - پایه دهم علوم انسانی

یکی از آموزش‌های ویدیویی دوره دبیرستان فرادرس، «آموزش ریاضی و آمار (۱) – پایه دهم علوم انسانی» است که به طور ویژه مربوط به دانش‌آموزان رشته علوم انسانی است. این آموزش ویدیویی در قالب چهار درس و در زمان ۶ ساعت و ۱۹ دقیقه تدوین شده است. در درس یکم، معادله درجه دوم مورد بحث قرار گرفته که شامل مطالب اصلی درس، نکات مهم و مثال‌های حل شده است. در درس دوم، موضوع مهم تابع ارائه شده و در آن، به موارد مهمی از قبیل تعریف ضابطه و تابع، رسم آن، دامنه و برد تابع و… پرداخته شده است. کار با داده‌های آماری موضوع درس سوم است. در نهایت، در درس چهارم به طور کامل، مطالب کتاب درسی درباره نمایش داده‌ها ارائه شده است.

معرفی فیلم آموزش ریاضی پایه دانشگاهی

آموزش ریاضی پایه دانشگاهی

یکی از آموزش‌هایی که برای آشنایی بیشتر با مبحث اتحاد و تجزیه می‌توانید به آن مراجعه کنید، آموزش ریاضی پایه دانشگاهی است. این آموزش که مدت آن ۱۲ ساعت و ۴۶ دقیقه است، در قالب ۱۰ درس تهیه شده است.

در درس اول، مجموعه‌ها، مجموعه اعداد، توان، ب.م.م و ک.م.م معرفی شده‌اند. موضوعات درس دوم، چندجمله‌ای‌ها و اتحاد و تجزیه است. در درس سوم، نامساوی‌ها، نامعادلات، طول پاره‌خط، ضریب زاویه و معادله خط مورد بحث قرار گرفته‌اند. مثلثات موضوع مهم درس چهارم است. تصاعد حسابی و هندسی در درس پنجم بررسی شده‌اند. تابع و دامنه و برد آن موضوعات مهم درس ششم هستند. در درس هفتم، تساوی دو تابع، اعمال جبری روی تابع و ترکیب توابع ارائه شده‌اند. در درس هشتم به توابع زوج و فرد، تابع یک به یک و تابع وارون پرداخته شده است. انواع توابع از قبیل تابع ثابت، تابع همانی، تابع علامت، تابع قدر مطلق و تابع جزء صحیح موضوع درس نهم هستند. در نهایت، در درس دهم توابع نمایی و لگاریتمی مورد بحث قرار گرفته‌اند.

جمع‌بندی

در این آموزش از مجله فرادرس، با عبارت جبری و اجزای آن آشنا شدیم. همچنین، انواع عبارت‌های جبری را بر اساس عوامل مختلف معرفی کردیم. علاوه بر این موارد، مطالبی را درباره ساده‌سازی و تجزیه عبارت‌های جبری همراه با معرفی اتحادهای مهم ارائه کردیم.

اگر این مطلب برای شما مفید بوده است، آموزش‌ها و مطالب زیر نیز به شما پیشنهاد می‌شوند:

بر اساس رای ۱۰ نفر
آیا این مطلب برای شما مفید بود؟
شما قبلا رای داده‌اید!
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.

سید سراج حمیدی دانش‌آموخته مهندسی برق است و به ریاضیات و زبان و ادبیات فارسی علاقه دارد. او آموزش‌های مهندسی برق، ریاضیات و ادبیات مجله فرادرس را می‌نویسد.

2 نظر در “عبارت جبری چیست و چند جمله دارد؟ + مثال و تمرین

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد.

مشاهده بیشتر