نظریه ارگودیک — به زبان ساده

۱۹۴۲ بازدید
آخرین به‌روزرسانی: ۲۴ خرداد ۱۴۰۲
زمان مطالعه: ۸ دقیقه
دانلود PDF مقاله
نظریه ارگودیک — به زبان سادهنظریه ارگودیک — به زبان ساده

یکی از شاخه‌های پر اهمیت ریاضی و نظریه‌های متعدد آن، تئوری به نام «نظریه ارگودیک» (Ergodic Theory) است. این نظریه مربوط به خصوصیات «سیستم‌های پویا» (Dynamic Systems) بوده و بخصوص در مباحث «فرآیندهای تصادفی» (Random Process) به کار گرفته می‌شود. به همین علت، در این نوشتار از مجله فرادرس به خاطر نقش نظریه ارگودیک در بیان رفتار سیستم‌های دینامیک، به بررسی این تئوری یا نظریه خواهیم پرداخت.

997696

از آنجایی که نظریه ارگودیک، مانند «نظریه احتمال» (Probability Theory)، برحسب «اندازه» (Measure) بیان می‌شود، بهتر است ابتدا مطالب دیگر مجله فرادرس با عناوین  نظریه اندازه در ریاضیات — مفاهیم و کاربردها و فضای توپولوژیک در ریاضیات — به زبان ساده را مطالعه کنید. همچنین خواندن نوشتارهای اندازه لبگ در نظریه اندازه | به زبان ساده و مجموعه بورل در نظریه اندازه | به زبان ساده نیز خالی از لطف نیست.

نظریه ارگودیک چیست؟

همانطور که در ابتدای متن اشاره کردیم، هدف اصلی در «نظریه ارگودیک» (Ergodic Theory) بیان خصوصیات آماری و رفتار سیستم‌های پویا یا دینامیک در طول یا بازه زمانی طولانی است. در واقع در نظریه ارگودیک قرار است متوسط تغییرات چنین سیستم مورد بررسی قرار گیرد.

در این حوزه مطالعاتی، منظور از «خصوصیات آماری» (Statistical Properties)، خواصی است که از طریق معدل رفتار توابع مختلف در طول زمان، تغییرات سیستم دینامیک یا سامانه‌های پویا بیان می‌شود. این ویژگی‌ها ممکن است توزیع (Distribution)، «میانگین» (Mean) یا «واریانس» (Variance) و همچنین «همبستگی» (Correlation) نقاط فرآیند در نظر گرفته شوند. به یاد دارید که مشخصات یک «فرآیند تصادفی» (Random Process) یا «سری زمانی» (Time Series) به این مشخصات و ویژگی‌ها بستگی داشت.

henry poincare
هنری پوانکاره (Jules Henri Poincaré)، ریاضیدان فرانسوی

در «سیستم‌های پویای قطعی» (Deterministic Dynamical Systems) فرض می‌شود که معادلات تعیین کننده رفتار دینامیکی در حالت ایده‌آل، هیچ گونه آشفتگی تصادفی، یا در حقیقت متغیر تصادفی نوفه (Noise) را در بر نمی‌گیرند و همه تغییرات ناشی از رفتار سیستم پویا است. نظریه ارگودیک، مانند «نظریه احتمال» (Probability Theory)، مبتنی بر مفاهیم کلی «نظریه اندازه» (Measure Theory) است و مفاهیم اولیه و ویژگی‌های آن براساس مطالعه و بررسی مسائل فیزیک آماری صورت پذیرفته است.

اولین گام در مطالعات نظریه ارگودیک، نتیجه تحقیقات «هنری پوانکاره»  (Jules Henri Poincaré) بود که منجر به اثبات «قضیه برگشتی پوانکاره» (Poincare Recurrence Theorem) شد. از این جهت، قضیه «پوانکاره» مهم است که ادعا می‌کند تقریباً تمامی نقاط در هر زیر مجموعه از «فضای حالت» (Phase Space) در نهایت به مجموعه باز خواهند گشت.

جزئیات بیشتر در این زمینه توسط قضیه‌های مختلف نظریه ارگودیک ارائه می‌شود. این قضایا ادعا می‌کنند، تحت شرایط خاص، میانگین زمان یک تابع در طول مسیر، «تقریباً در همه جا» (Almost Every Where) وجود داشته و مرتبط با میانگین آن فضا است.

دو قضیه بسیار مهم در نظریه ارگودیک مطرح است. قضیه اول که به «قضیه بیرکهوف» (Birkhoff Theorem) معروف است در سال 1931 مطرح گردید. قضیه دوم نیز به «قضیه فون نویمان» (von Neumann Theorem) شهرت دارد که وجود «میانگین ​​زمان» (Time Average) را در طول هر مسیر مورد بررسی قرار می‌دهد. برای کلاس ویژه‌ای از سیستم‌های ارگودیک، این میانگین زمان، تقریباً برای همه نقاط اولیه یکسان است. به بیان آماری و طبق «نظریه آمار» (Statistical Theory)، سیستمی که برای مدت طولانی در حال تغییر است، حالت یا نقطه اولیه خود را فراموش می‌کند.

خواص قوی‌تر، مانند «ترکیب» (Mixing) و «توزیع به شکل یکنواخت» (Uniformly Distribution) سیستم‌های دینامیکی نیز در نظریه ارگودیک قابلیت مطالعات بیشتری دارند. طبقه‌بندی سیستم‌های از طریق نظریه اندازه‌، یکی دیگر از بخش‌های کاربردی در نظریه ارگودیک محسوب می‌شود که به فرایندهای تصادفی و نمایش سیستم‌های دینامیکی منجر خواهد شد.

مفهوم ارگودیک و فرض ارگودیک، مرکز و اساس کاربردی نظریه ارگودیک را تشکیل می‌دهند. ایده اصلی برای این منظور آن است که برای اغلب سیستم‌ها، میانگین زمانی برای ویژگی‌های آن‌ها با میانگین روی کل فضا برابر است. این موضوع نشانگر پایداری سیستم‌های دینامیکی خواهد بود.

George David Birkhoff
جورج دیوید بیرکهوف (George David Birkhoff)

تبدیل ارگودیک

معمولا هنگام صحبت از نظریه ارگودیک، پای مفهوم دیگری به نام «تبدیل ارگودیک» (Ergodic Transformation) نیز به میان می‌آید. تبدیل ارگودیک اغلب برای تحرک یا جابجایی عناصر یک مجموعه به کار می‌روند.

یک قابلمه پر از لوبیای داغ را در نظر بگیرید. اگر یک قاشق روغن زیتون به آن اضافه کنیم. تکرار تبدیل معکوس ارگودیک روی خوراک لوبیا، اجازه نمی‌دهد که روغن زیتون در یک محل خاص از ظرف باقی بماند و آن را تقریبا به طور یکنواخت در خوراک لوبیا پخش و توزیع می‌کند. از طرف دیگر تکرار این عمل باعث فشردگی یا انبساط هیچ یک از قسمت‌های خوراک لوبیا نیز نخواهد شد. در این صورت این تبدیل، حافظ اندازه یا همان چگالی خواهد بود.

تعریف رسمی تبدیل ارگودیک به صورت زیر است.

فرض کنید که TT یک تبدیل از XX به XX است که «حافظ اندازه» (Measure-Preserving Transformation) روی فضای اندازه (X,Σ,μ)(X,\Sigma,\mu) باشد. درست مانند فضای احتمال در نظر بگیرید که μ(X)=1\mu(X) = 1 باشد. در این صورت TT را یک تبدیل ارگودیک می‌نامیم، اگر برای هر EE در Σ\Sigma که برایش T1(E)=ET^{-1}(E) = E باشد، آنگاه μ(E)=0\mu(E) = 0 یا μ(E)=1\mu(E) = 1 است.

در ادامه چند مثال در این زمینه را مورد بررسی قرار خواهیم داد.

مثال ۱

یک چرخش روی دایره‌ای R/ZR/Z را در نظر بگیرید. عناصر R/ZR/Z، مجموعه مقادیر یا اعداد گنگ هستند. این تبدیلات به صورت زیر در نظر گرفته می‌شوند.

Tθ:[0,1][0,1],Tθ(x)x+θmod1 \large T_\theta : [0,1] \rightarrow [0,1],\quad T_\theta(x) \triangleq x + \theta \mod 1

چنین تبدیلی یک تبدیل ارگودیک است. توجه داشته باشید که در اینجا θ\theta، یک «مقدار گنگ» (Irrational) است. در مقابل اگر θ=pq\theta = \frac{p}{q} یک عدد گویا باشد، آنگاه TT تناوبی بوده و دوره تناوب آن نیز qq خواهد بود. در نتیجه ارگودیک محسوب نمی‌شود.

irrational rotation
چرخش براساس زاویه گنگ θ\theta

مثال ۲

«جابجایی برنولی» (Bernoulli Shift)، که حالت تعمیم یافته فرآیند برنولی است دارای خاصیت ارگودیک است. جابجایی برنولی، یک «فرآیند تصادفی زمان-گسسته» (Discrete-time Stochastic Process) است که هر یک از متغیرهای تصادفی مستقل آن فقط یکی از مقادیر ۱ تا N را می‌گیرند.

فضای نمونه برای چنین فرآیندی به صورت زیر است.

X={1, ,N}Z \large X = \{ 1 , \ldots  , N \}^{ { \mathbb {Z} } }

که البته به شکل زیر نیز قابل نمایش است.

X={x=(,x1,x0,x1,):xk{1,,N}  kZ} \large X = \{ x = (\ldots , x_{{-1}} , x_{0} , x_{1} , \ldots ) : x_{k} \in \{1 , \ldots , N \} \; \forall k \in {\mathbb {Z}} \}

اگر احتمال برای رخداد هر یک از این مقادیر را برابر pip_i در نظر بگیریم، شرط زیر برای مجموع آن‌ها صادق است.

i=1Npi=1 \large \sum_{{i = 1}}^{N}p_{i} = 1

به طور کلی می‌توان تبدیلات جابجایی که روی دنباله‌ای از متغیرهای تصادفی مستقل و هم توزیع (i.i.d. Random Variables) روی می‌دهند، یک تبدیل ارگودیک محسوب می‌شوند، به شرطی که «فرآیندهای ایستا» (Stationary Process) بوده و از «قانون صفر و یک کولموگروف» (Kolmogrov' Zero-one Law)، تبعیت ‌کنند.

نکته: قضیه یا قانون صفر و یک کولموگروف مربوط به دنباله‌ای نامتناهی از پیشامدها است که در مورد احتمال رخداد پیشامدهای خاص در این دنباله بحث می‌کند. پیشامدهای مربوط به «قانون صفر و یک کولموگروف» را «پیشامدهای دمی» (tail Events) می‌نامند که احتمال رخداد آن‌ها به طور تقریبا همه جا، یا صفر است یا یک.

مثال ۳

ارگودیک بودن برای «سیستم‌های پویای پیوسته» (Continuous Dynamic System) به این معنی است مسیرها، همگی در فضای حالت گسترده شده‌اند. یک سیستم با «فضای حالت فشرده» (Compact Phase System) که انتگرال اولشان غیر ثابت باشد، ارگودیک محسوب نمی‌شود.

قضیه‌های ارگودیک

تبدیل TT که «حافظ اندازه» (Measure-Preserving Transformation) است را به شکل زیر روی فضای اندازه (X,Σ,μ)(X, \Sigma, \mu) در نظر بگیرید.

T:XX \large T : X \rightarrow X

همچنین فرض کنید که تابع ff یک تابع μ\mu-انتگرال‌پذیر است. به این معنی که fL1(μ)f \in L^1(\mu) است. میانگین‌های زیر را تعریف می‌کنیم.

میانگین زمان: این میانگین را به صورت مقدار متوسط (اگر موجود باشد) روی تکرارهای TT در نظر می‌گیریم که از نقطه آغازین xx شروع شده است.

بر اساس رای ۱۰ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
Wikipediaمجله فرادرس
۱ دیدگاه برای «نظریه ارگودیک — به زبان ساده»

سلام خیلی ممنون از مطلب مفیدی که در اختیار قرار دادید

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *