در نظریه تصمیم (Decision Theory) راه‌کارها و روش‌های مختلفی برای مشخص کردن تصمیم بهینه وجود دارد. معمولا اگر میزان جریمه یا سود در وضعیت احتمالاتی در اختیار باشد، می‌توان با استفاده از «میانگین‌گیری» (Expected Value) به یک تصمیم مناسب رسید. ولی در اغلب موارد هموارسازی به کمک میانگین، کارساز نیست یا حتی ممکن است احتمالاتی نیز در اختیارمان قرار نداشته باشد. این امکان نیز وجود دارد که بدون داشتن هیچ داده‌ای، مجبور به تصمیم گیری باشیم. در این مواقع با استفاده از قواعد مینیماکس و ماکسمین در نظریه تصمیم می‌توان به راه‌کاری مناسب در حالت عدم اطمینان و حتی احتمالاتی دست زد. به همین جهت این نوشتار از مجله فرادرس را به معرفی راه‌کار تصمیم بدون داده و قواعد «مینیماکس» (Minimax)، «ماکسمین» (Maxmin) و «ماکس-ماکس» (Maxmax) اختصاص داده‌ایم.

برای روشن‌تر شدن اصطلاحات مربوط به مینیماکس و ماکسمین در نظریه تصمیم پیشنهاد می‌شود مطالب نظریه تصمیم و انواع آن | به زبان ساده و نظریه بازی ها و قواعد تصمیم – مفاهیم اولیه را مطالعه کنید. همچنین خواندن نوشتارهای مارتینگل — معرفی و کاربردها و احتمال شرطی و قضیه بیز در علم داده — راهنمای کاربردی نیز خالی از لطف نیست.

مینیماکس و ماکسمین در نظریه تصمیم

استراتژی‌های ماکسمین، ماکسیماکس و مینیمکس سه رویکرد تصمیم‌گیری تحت عدم اطمینان هستند که بخصوص در مسائل مالی و تصمیم‌گیری‌های اقتصادی، نقش مهمی دارند. این گونه روش‌های انتخاب و تصمیم، برای اجرای یک فعالیت در استراتژی‌های مالی و بازار سهام نیز قابل استفاده است. البته در «روش‌های بیزی» (Bayesian Methods) از آنجایی که اطلاعات پیشین در تصمیم نقش دارند، می‌توان آن‌ها را به نوعی مرتبط با روش‌های نظریه تصمیم در نظر گرفت.

استفاده از جداول بازده (سود یا زیان) برای تعیین دامنه نتایج احتمالی براساس دو عامل محاسبه و نمایش داده می‌شوند. ضرر (پشیمانی) و سود یا کسب درآمد، دو عامل اصلی برای استراتژی‌های مینیماکس و ماکسمین در نظریه تصمیم محسوب می‌شوند.

نکته: اصول و قوانین مینیماکس و ماکسمین در نظریه تصمیم را می‌توان مشابه با کمینه سازی «تابع زیان» (Loss Function) یا بیشینه سازی «تابع درستنمایی» (Likelihood Function) در مباحث آماری در نظر گرفت. این دو روش معمولا برای مشخص کردن برآورد نقطه‌ای مورد استفاده قرار می‌گیرند.

در ادامه، به کمک یک جدول سود و زیان و گزینه‌های مختلف تصمیم گیری، سناریوهای متفاوتی را مشخص می‌کنیم که ممکن است برای مسئله مورد نظرمان رخ دهد. شاید بتوان این مسئله را به دنیایی واقعی نیز تعمیم داده و از راه‌کارهای ارائه شده، استفاده کرد.

فرض کنید در یک کارخانه تولید «پلی پروپیلن» (Polypropylene)، مدیر بخش تولید با جدول برنامه‌ریزی تولید روزانه و سفارشات زیر روبرو شده است. این جدول براساس تجربیات قبلی آن شرکت تهیه شده. مدیریت بخش برنامه ریزی تولید، باید قبل از اینکه تقاضای واقعی را بداند، برنامه‌ریزی تولید را انجام دهد. انتخاب او بین 40، 50، 60 و 70 تن تولید محصول است زیرا این شرکت دارای ۴ خط تولید است که با فعالیت هر یک از این خطوط، به ظرفیت مورد نظر خواهد رسید. از طرفی تقاضای واقعی با احتمالاتی که در جدول نشان داده شده، یکی از مقادیر 40، 50، 60 و 70 را خواهد پذیرفت. به عنوان مثال تقاضای (سفارش) ۴۰ تن محصول با احتمال ۰٫۱ رخ می‌دهد. در این جدول سود یا زیان (مقدارهای منفی) نیز برای هر سناریوی تولید و سفارش نشان داده شده است. مثلا اگر مدیر تولید تصمیم به تولید 70 تن پلی پروپیلن بگیرد، اما تقاضا فقط 50 باشد، در این صورت کارخانه به میزان 60 واحد مالی (مثلا ۶۰ میلیون تومان) ضرر خواهد داشت.

جدول ۱: بازده شرکت برحسب ماتریس سفارش و برنامه‌ریزی تولید شرکت پلی پروپیلن

برنامه ریزی تولید
 سفارش احتمالات ۴۰ ۵۰ ۶۰ ۷۰
40 0٫1 80 0  ۸۰- 160-
50 0٫2 80 100 20 60-
60 0٫۴ 80 100 120 40
70 0٫3 80 100 120 140
حداکثر بازده 80 100 120 140

سوال این است که مدیریت بخش تولید کدام سطح از تولید را برای امروز انتخاب کند تا کارخانه در آن روز بهترین بازدهی را داشته باشد. در ادامه به کمک قواعد ماکس-ماکس، ماکسمین و مینماکس، تصمیم یا استراتژی مناسب را پیدا خواهیم کرد.

ماکس-ماکس (Maximax)

قانون یا قاعده «حداکثر – حداکثر» (Maximax) شامل انتخاب گزینه‌ای است که حداکثر بازده موجود را بیشینه کند. این رویکرد برای یک سرمایه گذار خوش‌بین یا کسانی که ریسک پذیر هستند و می‌خواهند در صورت بروز بهترین نتیجه، بیشترین بهره را ببرند، مناسب خواهد بود. مدیری که معیار حداکثر-حداکثر (بیشینه-بیشینه) را به کار می‌گیرد، فرض می‌کند هر اقدامی که صورت دهد، بهترین اتفاق رخ می‌دهد. به این علت او را در دسته افراد ریسک پذیر قرار می‌دهیم. به نظر شما اگر مدیر تولید کارخانه پلی پرواتیلن جزء این گروه از افراد باشد، چه تصمیمی برای تولید روزانه کارخانه خواهد گرفت؟

با نگاهی به جدول بازده، حداکثر فروش ممکن، 140 میلیون تومان است. این اتفاق زمانی رخ می‌دهد که میزان تولید 70 تن به عنوان سفارش صحیح بوده و به همین میزان نیز برنامه‌ریزی شده باشد. بنابراین مدیر تولید تصمیم می‌گیرد که روزانه به میزان ۷۰ تن پودر تولید شود. بنابراین اگر این میزان تقاضا موجود باشد، شرکت به بیشترین میزان سود خواهد رسید.

خوشبختانه، فرادرس در یکی از آموزش‌های منتشر شده، به موضوع نظریه تصمیم و روش‌های تصمیم‌های چند معیاره پرداخته است. برای دسترسی به این فیلم آموزشی، کافی است به لینکی که در ادامه آمده است، مراجعه کنید.

  • برای مشاهده فیلم آموزش روش بهترین – بدترین (BWM) در تصمیم گیری چندمعیاره + اینجا کلیک کنید.

ماکسمین (Maximin)

قانون «حداکثر-حداقل» یا «بیشینهٔ کمینه»، شامل انتخاب گزینه‌ای است که حداقل بازده قابل دستیابی را به حداکثر برساند. سرمایه‌گذار به بدترین نتیجه ممکن در هر سطح نگاه می‌کند، سپس بالاترین مقدار از آن‌ها را به عنوان استراتژی خود انتخاب می‌کند. بنابراین تصمیم گیرنده نتیجه‌ای را انتخاب کرده است که تضمین شده تا ضررهایش را به حداقل برساند. در این روند، او فرصت کسب سود بزرگ را از دست می‌دهد و به نظر می‌رسد که مقداری محافظه‌کاری در تصمیم خود به کار گرفته است.

این رویکرد برای یک فرد بدبین که به دنبال دستیابی به بهترین نتایج در صورت بروز بدترین حالت است، مناسب خواهد بود. به نظر شما اگر مدیر برنامه‌ریزی تولید کارخانه پلی پروپیلن، در این گروه از افراد جای داشته باشد، کدام میزان تولید را انتخاب خواهد کرد. به جدول ۱ دوباره نگاه کنید. در زیر گزاره‌های مربوط به این جدول را به شکل عبارت‌های فارسی درج کرده‌ایم.

  • اگر تصمیم به تولید 40 تن محصول داشته باشیم، حداقل پرداخت آن 80 میلیون تومان است.
  • اگر تصمیم به تهیه و تولید 50 تن پودر داشته باشیم، حداقل بازده 0 میلیون تومان است.
  • اگر تصمیم به برنامه ریزی تولید 60 تن محصول داشته باشیم، حداقل دریافتی (ضرر) 80- میلیون تومان است.
  • اگر تصمیم به تهیه 70 تن محصول بگیریم، حداقل پرداخت (ضرر متحمل شده) ۱۶۰- میلیون تومان است.

بیشترین مقدار از بین حداقل سود‌های حاصل، مربوط به تولید ۴۰ تن محصول است. این تصمیم، تضمین می‌کند که در بدترین حالت سناریوی ممکن، می‌توان به سودی برابر با 80 میلیون تومان رسید. مشخص است که در سطر آخر جدول ۱، کمترین مقدار در استراتژی ماکسمین مورد توجه قرار گرفته و به کمترین میزان سود، اکتفا کرده‌ایم.

ضرر مینیمکس (Minimax)

استراتژی «حداقل-حداکثر» یا «کمین‌بیش»، یک استراتژی محتاطانه است که حداکثر ضرر را به حداقل می‌رساند. این استراتژی برای یک تصمیم گیرنده محافظه کار مفید است. اساساً این روش برای فرار از باخت و حداقل کردن ضررها صورت گرفته و مخصوص افرادی است که که نمی‌خواهند تصمیم اشتباه بگیرند.

«پشیمانی» (Regret) در این زمینه به عنوان از دست دادن فرصت از طریق گرفتن تصمیم اشتباه محسوب شده است. به این معنی که حال که عمل مورد نظر را انجام داده‌ایم، به چه میزان از کسب سود بازمانده‌ یا ضرر کرده‌ایم. برای حل این مسئله باید جدولی ایجاد شود که میزان پشیمانی را نشان دهد. این بدان معناست که ما باید بیشترین بازده را برای هر ردیف تقاضا پیدا کنیم، سپس همه اعداد دیگر را در این ردیف، از آن کم کنیم.

به عنوان مثال، اگر تقاضا 40 تن باشد (سطر اول) و برنامه‌ریزی فروش نیز به همین میزان باشد، شرکت چیزی را از دست نداده و میزان پشیمانی صفر خواهد بود. در این حالت حداکثر درآمد در سطر اول برابر با ۸۰ میلیون تومان است و هر خانه از جدول در این سطر را از مقدار ۸۰ کسر می‌کنیم تا میزان پشیمانی (ضرر) حاصل از تصمیم مشخص شود. بنابراین در سطر اول خواهیم داشت:

$$ \large 80- 80 = 0 $$

$$ \large 80 – 0 = 80 $$

$$ \large 80 – (-80) = 160 $$

$$ \large 80 – (-160) = 240 $$

برای بقیه سطرها نیز به همین ترتیب عمل خواهیم کرد. برای مثال در سطر مربوط به سفارش ۷۰ تن، در صورت تولید ۴۰ تن محصول، میزان پشیمانی برابر با ۶۰ میلیون تومان است. زیرا در صورتی که برنامه‌ریزی تولید تمامی ۷۰ تن را مشخص کرده بود، ۱۴۰ میلیون تومان کسب می‌شود ولی در حال حاضر فقط ۸۰ میلیون تومان درآمد داشته‌ایم. پس میزان پشیمانی برابر است با $$140 – 80 = 60$$.

نکته: مشخص است که قطر اصلی این جدول یا ماتریس، شامل مقادیر صفر خواهد بود. البته توجه داشته باشید که ماتریس سفارش و برنامه‌ریزی تولید در این مثال به صورت یک ماتریس مربعی است.

ضررها یا پشیمانی ناشی از تصمیم غلط برای تولید را می‌توان به صورت زیر جدول‌بندی کرد.

جدول ۲: ضررهای تصمیم نادرست و میزان پشیمانی

برنامه‌ریزی تولید
سفارش ۴۰ ۵۰ ۶۰ ۷۰
40 0 80  160 240
50 20 0 80 160
60 40 20 0 80
70 60 40 20 0
حداکثر هر ستون 60 80 160 240

حداکثر ضرر برای هر انتخاب به شرح زیر است.

  • اگر تصمیم به تهیه 40 تن تولید داشته باشیم، حداکثر ضرر 60 میلیون تومان خواهد بود.
  • اگر تصمیم به تهیه 50 تن محصول پولی پروپیلن داشته باشیم، حداکثر ضرر شرکت در یک روز 80 میلیون تومان در نظر گرفته می‌شود.
  • تصمیم به تهیه 60 تن تولید، حداکثر ضرر 160 میلیونی برای شرکت در بر دارد.
  • اگر تصمیم به تهیه 70 تن محصول بگیریم، حداکثر ضرر اعمال شده 240 میلیون تومان است.

مدیری که از معیار پشیمانی minimax استفاده می‌کند، مایل است حداکثر پشیمانی را به حداقل برساند و بنابراین فقط تولید 40 تن از محصول را مناسب تشخیص می‌دهد. مشخص است که این مدیر برای کمینه‌سازی ضررها، از بین استراتژی‌هایی که بیشترین ضرر را دارند،‌ کمترین آن‌ها را انتخاب کرده است. پس هنگامی که هیچ اطلاعی از بازار و سفارشات ندارد، دستور تولید ۴۰ تن در روز را صادر می‌کند.

نکته: توجه داشته باشید که تکنیک مینیماکس و ماکسمین در نظریه تصمیم حتی اگر احتمالاتی برای رخداد هر یک از حالت‌ها یا استراتژی‌ها نیز وجود نداشته باشد، باز هم قابل استفاده هستند. در حالیکه برای محاسبه «مقادیر مورد انتظار» (Expected Value)، به احتمالات احتیاج داریم تا تصمیم مناسبی بگیریم. این موضوع یکی از مزیت‌های روش‌های مینیماکس و ماکسمین در نظریه تصمیم محسوب می‌شود.

معرفی فیلم آموزش روش بهترین – بدترین (BWM) در تصمیم گیری چند معیاره

BWM Decision making

فرادرس در یکی از آموزش‌های خود با نام آموزش روش بهترین – بدترین (BWM) در تصمیم گیری چندمعیاره، به استراتژی‌های تصمیم‌گیری پرداخته است. این الگوری تصمیم‌گیری در سال ۲۰۱۵ توسط آقای جعفر رضایی توسعه یافته و به کار گرفته می‌شود. این تکنیک به کمک ماتریس مقایسات زوجی، عمل کرده و نسبت به روش‌های مشابه مانند تکنیک مینیماکس و ماکسمین در نظریه تصمیم ، بار محاسباتی کمتری دارد. فراگیران در این آموزش، ابتدا مفاهیم اولیه و مقدمات مرتبط با روش BWM آشنا شده و در گام های بعدی با استفاده از چندین مثال کاربردی مفاهیم را بهتر درک می‌کنند. در ادامه خلاصه‌ای از سرفصل‌ها و رئوس مطالب این مجموعه آموزش را مشاهده می‌کنید.

درس یکم و دوم شامل کلیات و یادآوری مفاهیم تصمیم ‌گیری چند معیاره، مانند دسته‌بندی مدل‌های تصمیم‌گیری، جایگاه روش BWM (Best-Worst Method) در دسته‌بندی مدل‌های تصمیم گیری است.
در درس سوم، تشریح روش بهترین – بدترین به عنوان یک الگوی تصمیم‌گیریه چند معیاره و همچنین تشریح مدل ریاضی و گام‌های آن صورت گرفته است. در درس چهارم با ذکر ۲ مثال و به کمک نرم‌افزار ارائه شده، موارد عملی به فراگیر آموخته می‌شود. درس پنجم و ششم نیز به مقایسه مدل BWM و AHP یا «فرایند تحلیل سلسله ‌مراتبی» (Analytic Hierarchical Process) پرداخته و عملکرد هر یک را جمع‌بندی می‌کند.

این آموزش برای کسانی که در رشته‌های رشته‌های مهندسی صنایع و مدیریت، فعالیت دارند، بسیار مفید است. زمان این آموزش ۲ ساعت و ۱۴ دقیقه است.

  • برای مشاهده فیلم آموزش روش بهترین – بدترین (BWM) در تصمیم گیری چند معیاره + اینجا کلیک کنید.

خلاصه و جمع‌بندی

در این نوشتار با مفاهیم اولیه مینیماکس و ماکسمین در نظریه تصمیم در حالت بدون داده و شرایط احتمالی آشنا شدید. همانطور که دیدید، سه نوع رویکرد مینیماکس و ماکسمین در نظریه تصمیم به همراه ماکس-ماکس در این زمینه بخصوص در حوزه مسائل مالی مورد استفاده قرار می‌گیرد. همانطور که خواندید، مثال‌های گفته شده در این متن، به درک روش‌های تصمیم و همچنین نوع مسئله‌هایی که به کمک آن‌ها حل می‌شوند، کمک کرده و ابزارهای تصمیم‌گیری را بهتر مشخص کرده است.

اگر این مطلب برای شما مفید بوده است، آموزش‌ها و مطالب زیر نیز به شما پیشنهاد می‌شوند:

آرمان ری بد (+)

«آرمان ری‌بد» دکتری آمار در شاخه آمار ریاضی دارد. از علاقمندی‌های او، یادگیری ماشین، خوشه‌بندی و داده‌کاوی است و در حال حاضر نوشتارهای مربوط به آمار و یادگیری ماشین را در مجله فرادرس تهیه می‌کند.

آیا این مطلب برای شما مفید بود؟

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *