متغیر تصادفی و توزیع نمایی — به زبان ساده
در یک آزمایش تصادفی پواسن، تعداد رخداد (موفقیت یا شکست) در واحد زمان یا مکان، مورد نظر بود. ولی اگر متغیر تصادفی را زمان رسیدن به اولین رخداد (موفقیت یا شکست) در نظر بگیریم، یک متغیر تصادفی پیوسته ایجاد شده که دارای «توزیع نمایی» (Exponential Distribution) است. برای مثال اگر متغیر تصادفی مربوط به زمان انتظار یک مشتری برای انجام کار بانکی یا طول بررسی پارچه برای رسیدن به اولین زدگی باشد، میتوان آن را متغیر تصادفی با توزیع نمایی در نظر گرفت. همچنین بیشتر قطعات الکتریکی و الکترونیکی دارای طول عمری (زمان طی شده تا سوختن قطعه) با توزیع نمایی هستند.
برای آشنایی بیشتر با مبحث آزمایش تصادفی پواسن به مطلب متغیر تصادفی و توزیع پواسن — به زبان ساده مراجعه و همچنین اگر میخواهید در مورد متغیرهای تصادفی پیوسته و تابع احتمال توزیع آنها بیشتر آگاه شوید، مطلب متغیر تصادفی، تابع احتمال و تابع توزیع احتمال را مطالعه کنید.
متغیر تصادفی نمایی (Exponential Random Variable)
اگر X یک متغیر تصادفی پیوسته با تکیهگاه اعداد حقیقی نامنفی باشد و تابع چگالی آن به صورت زیر نوشته شود، دارای توزیع نمایی است:
(فرم ۱
در این حالت مینویسیم و میخوانیم X دارای توزیع نمایی با پارامتر است.
البته گاهی برای نمایش تابع چگالی (جرم احتمال) چنین متغیر تصادفی از نمایش زیر کمک میگیرند.
(فرم ۲
واضح است که در فرم ۲ از تابع چگالی، بین و رابطه زیر وجود دارد:
در توزیع پواسن میدانیم که تعداد متوسط رخدادها (موفقیت یا شکست) در واحد زمان همان پارامتر توزیع پواسن یعنی است. یعنی در هر واحد زمان به طور متوسط بار موفقیت مشاهده میشود. در نتیجه میتوان انتظار داشت یک رخداد را در طول زمان مشاهده کرد.
بنابراین متوسط طول زمان برای رسیدن به اولین موفقیت در توزیع نمایی برابر با است. به همین علت گاهی به جای فرم ۱ برای نمایش تابع چگالی از فرم ۲ استفاده میشود تا تابع چگالی احتمال دارای پارامتری باشد که بیانگر متوسط طول زمان انتظار برای رسیدن به اولین موفقیت است.
اگر نمودار حاصل از تابع چگالی احتمال این متغیر تصادفی را براساس تکیهگاه و مقدارهای مختلف پارامتر یعنی ترسیم کنیم، شکلی مانند زیر ایجاد خواهد شد.
برای پیدا کردن تابع توزیع تجمعی متغیر تصادفی نمایی، کافی است که از تابع چگالی احتمال انتگرال بگیریم. این کار باعث محاسبه سطح زیر منحنی تابع چگالی میشود. پس اگر تابع توزیع احتمال را با نشان دهیم، خواهیم داشت:
نمودار حاصل از محاسبه تابع توزیع احتمال برای متغیر تصادفی نمایی با پارامتر به صورت زیر خواهد بود:
نکته: برای به دست آوردن کافی است مقدار محاسبه شود.
مثال ۱
فرض کنید باشد، احتمال اینکه متغیر تصادفی X بزرگتر از ۴ باشد چقدر است؟
این مثال را میتوان به این شکل تفسیر کرد: در یک آزمایش پواسن که 2 واحد زمانی طول میکشد تا به اولین موفقیت برسیم، احتمال اینکه اولین موفقیت را بعد از ۴ واحد زمانی مشاهده کنیم، بسیار کوچک (0.0003) خواهد بود و با احتمال قریب به یقین (0.9997) در طول این زمان، یک موفقیت مشاهده میشود.
امید-ریاضی و واریانس متغیر تصادفی نمایی
اگر آنگاه به کمک انتگرال میتوان امید-ریاضی و واریانس متغیر تصادفی نمایی را بدست آورد.
همانطور که انتظار میرفت امید-ریاضی یا همان متوسط متغیر تصادفی با پارامتر برابر است. همچنین انحراف معیار (جذر واریانس) برای متغیر تصادفی نمایی با مقدار امید-ریاضی برابر خواهد بود.
مثال ۲
به طور متوسط در هر 2 متر از یک تیرآهن ۶ متری، 1 ترک وجود دارد. اگر X نشاندهنده طولی از تیرآهن باشد که دارای ترک نیست، احتمال اینکه تیرآهن ترک نداشته باشد چقدر است؟
میدانیم برای هر متر از تیرآهن به طور متوسط تعداد ترک وجود دارد، بنابراین منطقی است که در این حالت بنویسیم . پس به دنبال این هستیم که ۶ متر یا بیشتر از طول تیرآهن باید طی شود تا به اولین ترک برسیم. برای محاسبه این احتمال به صورت زیر عمل میکنیم.
به این ترتیب تقریبا مطمئن هستیم که تیرآهن دارای ترک است. زیرا فقط در حدود ۵٪ موارد به تیرآهن بدون ترک برخورد میکنیم.
خاصیت عدم حافظه برای متغیر تصادفی با توزیع نمایی
با توجه به آزمایش تصادفی برنولی، میدانیم خاصیت عدم حافظه برای متغیر تصادفی گسسته با توزیع هندسی، وجود دارد. این ویژگی برای متغیر تصادفی پیوسته با توزیع نمایی نیز قابل بررسی است.
به این ترتیب اگر t و s را دو زمان در نظر بگیریم، میتوانیم با استفاده از احتمال شرطی بنوسیم:
این رابطه براساس تعریف احتمال شرطی، نشان میدهد که اگر بدانیم زمان انتظار برای رسیدن به اولین موفقیت از s بیشتر است، احتمال اینکه این زمان بیشتر از t+s باشد فقط به t بستگی دارد. در این حالت اگر X را طول عمر یک لامپ در نظر بگیریم (موفقیت یعنی سوختن لامپ) میتوانیم بگوییم اطلاع از اینکه این لامپ 2000 ساعت عمر کرده تاثیری در طول عمر آیندهاش ندارد.
رابطه بالا را میتوان به شکل سادهتری نیز نمایش داد:
با توجه به این فرم خاصیت عدم حافظه میتوانیم بگوییم، احتمال اینکه لامپی با متوسط طول عمر ۱۰۰0۰ ساعت، بیش از ۵۰۰۰ ساعت کار کند، برابر است با اینکه ابتدا بیش از 2000 ساعت و سپس بیش از 3000 ساعت کار کند. یعنی:
و همچنین
با توجه به اینکه قطعات الکترونیکی دارای طول عمر با توزیع نمایی هستند، برای تعیین دوره ضمانت این گونه قطعات از متغیر تصادفی نمایی استفاده میشود. به مثال زیر توجه کنید.
مثال ۳
فرض کنید شرکت تولید آسانسور از مدار کنترل فرمانی برای تجهیزات خود استفاده میکند که متوسط طول عمر آن 10 سال است. شرکت باید آسانسور را گارانتی (ضمانت) کند. اگر شرکت مدار کنترل آسانسور را ۴ سال ضمانت کند، احتمال اینکه مجبور به تعویض رایگان مدار کنترل براساس ضمانت نامه باشد، چقدر است؟
با توجه به توضیحات گفته شده مشخص است که . حال باید احتمال این را محاسبه کنیم که مدار کنترل دارای عمری کوتاهتر از ۴ سال باشد.
بنابراین اگر شرکت گارانتی مدار کنترل را ۴ سال انتخاب کند، باید تقریبا 33٪ مواقع قبل از رسیدن به پایان دوره گارانتی، قطعه را رایگان تعویض کند که ممکن است برایش به صرفه نباشد. حال به نظر شما طول دوره گارانتی چقدر باشد که شرکت حداکثر در ۱۰٪ موارد مجبور به تعویض قطعه باشد؟
برای پاسخ به این پرسش کافی است که براساس شیوه محاسبه تابع توزیع احتمال متغیر تصادفی نمایی، عملیات زیر را انجام دهیم:
در نتیجه اگر طول دوره گارانتی برابر با یک سال باشد، میتوان امیدوار بود که حداکثر ۱۰٪ مدار کنترل آسانسورها به طور رایگان نیاز به تعویض پیدا کنند.
اگر مطلب بالا برایتان مفید بوده است، آموزشهایی که در ادامه آمدهاند نیز به شما پیشنهاد میشوند:
- مجموعه آموزشهای آمار، احتمالات و دادهکاوی
- احتمال شرطی (Conditional Probability) --- اصول و شیوه محاسبه
- آموزش آمار و احتمال مهندسی
- آزمایش تصادفی، پیشامد و تابع احتمال
- متغیر تصادفی و توزیع پواسن — به زبان ساده
- متغیر تصادفی و توزیع هندسی — به زبان ساده
^^
با سلام و تشکر
“برای پیدا کردن تابع توزیع متغیر تصادفی نمایی، کافی است که از تابع چگالی احتمال انتگرال بگیریم. این کار باعث محاسبه سطح زیر منحنی تابع چگالی میشود.” فک کنم اینجا منظور شما تابع توزیع تجمعی (CDF) باشه
با سلام خدمت شما؛
تابعی که در خط بعد زیر انتگرال قرار میگیرد، تابع چگالی احتمال توزیع نمایی است، اما حاصل انتگرالگیری، تابع توزیع تجمعی است که البته به این قسمت در متن اشارهای نشده است. این قسمت به مطلب اضافه شد تا کاملتر شود.
سپاس از دقت، توجه و همراهی شما با مجله فرادرس
ببخشید در مثال دوم شما گفتید در هر سه متر در یک تیرآهن ۶ متری یک ترک وجود دارد ولی گفتید میدانیم برای هر متر از تیرآهن به طور متوسط تعداد 3/6ترک وجود دارد،در حالی که به نظر باید در هر متر 1/3 ترک وجود داشته باشد
درود به شما همراه مجله فرادرس؛
کاملا حق با شما است. متن مورد نظر اصلاح شد.
از اینکه نوشتارهای آمار را دنبال میکنید، سپاسگزاریم.
تندرست و پیروز باشید.