مقدار احتمال (p–Value) در آزمون فرض آماری – به زبان ساده

۳۵۲۰۷ بازدید
آخرین به‌روزرسانی: ۲۴ مهر ۱۴۰۲
زمان مطالعه: ۴ دقیقه
دانلود PDF مقاله
مقدار احتمال (p–Value) در آزمون فرض آماری – به زبان سادهمقدار احتمال (p–Value) در آزمون فرض آماری – به زبان ساده

در بیشتر نرم‌افزارهای آماری برای سهولت در تصمیم‌گیری نسبت به نتیجه آزمون فرض آماری، شاخصی به نام «مقدار احتمال» (p-Value) ارائه می‌شود. این مقدار به محقق کمک می‌کند که بدون مراجعه به جداول توزیع‌های آماری بتواند در مورد رد یا عدم رد فرض صفر تصمیم بگیرید. گاهی به p-Value «احتمال با معنایی» (Significant Level) یا p-مقدار نیز می‌گویند. برای مثال در نرم‌افزار R‌ مقدار احتمال با p-Value و در نرم‌افزار SPSS مقدار احتمال با Sig نشان داده می‌شود.

997696

مقدار احتمال (p-Value)

برای آنکه بتوان درک مناسبی از مقدار احتمال بدست آورد، ابتدا باید در مورد آزمون فرض آماری و مراحل انجام آن اطلاع داشت. پس اگر در این زمینه تازه‌کار هستید بهتر است ابتدا برای درک و آشنایی بیشتر، مطلب تحلیل‌ها و آزمون‌های آماری — مفاهیم و اصطلاحات را مطالعه کنید.

محاسبه مقدار احتمال برمبنای فرض صفر انجام می‌گیرد و از فرض مقابل استفاده‌ای نمی‌شود. بنابراین برمبنای مقدار احتمال می‌توان به رد فرض صفر (H0H_0) اقدام کرد. ولی باید توجه داشت که مقدار احتمال نمی‌تواند برای قبول فرض مقابل (H1H_1) معیار مناسبی باشد.

برای مثال یک آزمون فرض آماری را با فرضیات زیر برای پارامتر میانگین جامعه آماری، در نظر بگیرید:

{H0:μ=10H1:μ=20\begin{cases} H_0: \mu =10\\ H_1: \mu= 20\\ \end{cases}

اگر فرض کنیم که براساس مقدار احتمال، فرض صفر رد شده است، مشخص نیست فرضیه‌ای که قبول خواهد شد حتما H1H_1 باشد. زیرا فرض مقابل می‌تواند هر یک از حالت‌های زیر باشد:

{H0:μ=10H1:μ<20\begin{cases} H_0: \mu =10\\ H_1: \mu< 20\\ \end{cases}

{H0:μ=10H1:μ>20\begin{cases} H_0: \mu =10\\ H_1: \mu> 20\\ \end{cases}

{H0:μ=10H1:μ=30\begin{cases} H_0: \mu =10\\ H_1: \mu= 30\\ \end{cases}

بنابراین رد فرض صفر به معنی قبول فرض مقابل نخواهد بود.

ناحیه بحرانی و سطح آزمون دو طرفه

حال برای تعریف غیررسمی از مقدار احتمال، فرضیات زیر را در نظر می‌گیریم:

  •  X آماره آزمون است.
  • x حاصل آماره آزمون برحسب نمونه تصادفی است.
  • ناحیه بحرانی نیز به صورت X>x نوشته شده.

تعریف غیر رسمی مقدار احتمال: احتمال رد فرض صفر (براساس نمونه تصادفی و آماره آزمون و ناحیه بحرانی) به شرط آنکه فرض صفر صحیح باشد، مقدار احتمال نامیده می‌شود. بیان ریاضی برای این حالت به صورت زیر است:

p-Value=P(X>x  H0)P(X >x|\;H_0)

برای درک بهتر به یک مثال می‌پردازیم.

مثال ۱

در یک بازی شانسی، باید یک سکه پرتاب شود. اگر سکه شیر بیاید برنده خواهیم بود و در غیر اینصورت بازنده. برگزار کننده این بازی ادعا دارد که سکه‌اش نااریب است. یعنی احتمال ظاهر شدن شیر با خط برابر است. برای اینکه ادعای برگزار کننده را بررسی کنیم یک آزمون آماری تشکیل می‌دهیم.

اگر p احتمال مشاهده شیر باشد، فرضیه‌های این آزمون آماری به صورت زیر است:

{H0:p=12H1:p>12\begin{cases} H_0: p =\dfrac{1}{2}\\ H_1: p > \dfrac{1}{2}\\ \end{cases}

حال اگر X را تعداد شیر در ۱۰ بار پرتاب سکه در نظر بگیریم، با انجام این آزمایش، نتیجه آماره آزمون (یعنی همان X) براساس نمونه تصادفی (شمارش تعداد شیرها در ۱۰ بار پرتاب سکه) برابر با 6 شده است.

حال مقدار احتمال را محاسبه می‌کنیم.

P(X>6  H0)=1P(X5  p=12)=P(X > 6|\;H_0)=1-P(X\leq 5|\;p=\tfrac{1}{2})=

1(i=15(10i)12i×1210i)=10.6230=0.37701-(\sum_{i=1}^5 {10 \choose i}\tfrac{1}{2}^i\times \tfrac{1}{2}^{10-i})=1-0.6230=0.3770

این احتمال نشان می‌دهد که آزمون با صحیح بودن فرض صفر، چقدر وجود چنین نمونه‌ای را محتمل می‌داند. از آنجایی که این احتمال بزرگ به نظر می‌رسد، نمی‌توان فرض صفر را رد کرد.

همانطور که دیده شد وجود یا عدم وجود فرض مقابل تاثیری در محاسبه مقدار احتمال نداشت و با وجود فرض صفر، فقط ناحیه بحرانی و مقدار آماره آزمون برحسب نمونه تصادفی برای محاسبه مقدار احتمال کافی بود.

تعریف رسمی مقدار احتمال: کمترین مقداری از احتمال خطای نوع اول (سطح آزمون) که ممکن است یافته آماره آزمون، موجب رد فرض صفر شود.

مقدار احتمال و سطح آزمون

به بیان دیگر، در یک آزمون فرض، مقدار احتمال (p-Value) برابر با کمترین مقداری از سطح معنی‌داری (significance level) یا همان احتمال خطای نوع اول است، که موجب رد فرض صفر می‌شود.

با توجه به این موضوع، می‌توان قاعده‌ای برای انجام آزمون فرض آماری بوسیله مقدار احتمال در نظر گرفت: فرض صفر رد می‌شود، هر گاه مقدار احتمال از α\alpha (احتمال خطای نوع اول) کوچکتر باشد.

قاعده تصمیم با p-Value

شیوه محاسبه مقدار احتمال

در حالت کلی می‌توان مقدار احتمال را براساس نوع آزمون فرض برای پارمتر θ\theta به صورت زیر محاسبه کرد.

در حالتی که آزمون فرض به صورت:

{H0:θ=θ0H1:θ>θ0\begin{cases} H_0: \theta =\theta_0\\ H_1: \theta > \theta_0\\ \end{cases}

آزمون یک طرفه راست

مقدار احتمال به صورت زیر محاسبه می‌شود:

p-Value=Pθ0(Xx)P_{\theta_0}(X\geq x)

همچنین در حالتی که آزمون فرض به شکل:

{H0:θ=θ0H1:θ<θ0\begin{cases} H_0: \theta =\theta_0\\ H_1: \theta < \theta_0\\ \end{cases}

آزمون یک طرفه چپ

مقدار احتمال به صورت زیر خواهد بود:

p-Value=Pθ0(Xx)P_{\theta_0}(X\leq x)

همینطور در حالتی که آزمون فرض به صورت:

{H0:θ=θ0H1:θθ0\begin{cases} H_0: \theta =\theta_0\\ H_1: \theta \neq \theta_0\\ \end{cases}

آزمون دو طرفه

مقدار احتمال به صورت زیر قابل محاسبه است:

p-Value=2min(Pθ0(Xx),Pθ0(Xx))2\min(P_{\theta_0}(X\leq x),P_{\theta_0}(X\geq x))

مثال ۲

متغیر تصادفی تعداد زدگی‌ها در یک توپ پارچه، دارای توزیع پواسن با پارامتر λ\lambda است. طبق نظر کارشناس کارخانه متوسط تعداد زدگی در هر توپ پارچه برابر با ۵ است. به طور تصادفی یک توپ از پارچه‌ها انتخاب شده و تعداد زدگی‌ها برابر با ۱۰ شمارش شده است. در سطح خطای ۵٪، گفته کارشناس را بررسی می‌کنیم.

می‌دانیم تعداد زدگی‌ها (X) دارای توزیع پواسن با پرامتر λ\lambda‌ است. یعنی XP(λ)X\sim P(\lambda).

حال با توجه به اینکه نظر کارشناس، گزاره‌ای است که از قبل در مورد پارامتر جامعه وجود داشته، فرض‌های مربوط به آزمون آماری را می‌نویسیم.

{H0:λ=5H1:λ5\begin{cases} H_0: \lambda =5\\ H_1: \lambda \neq 5\\ \end{cases}

بنابراین مقدار احتمال به صورت زیر قابل محاسبه است:

Pλ=5(X10)=k=110e55kk!=0.9863P_{\lambda=5}(X\leq 10)=\sum_{k=1}^{10} \dfrac{e^{-5}5^k}{k!}=0.9863

و همچنین:

Pλ=5(X10)=1Pλ=5(X9)=1(k=19e55kk!)=10.9682=0.0318P_{\lambda=5}(X\geq 10)=1-P_{\lambda=5}(X\leq 9)=1-(\sum_{k=1}^{9} \dfrac{e^{-5}5^k}{k!})=1-0.9682=0.0318

در نتیجه خواهیم داشت:

p-Value=2min(P(X10),P(X10))=2min(0.9863,0.0318)=0.06362\min(P(X\leq 10),P(X\geq 10))=2\min(0.9863,0.0318)=0.0636

از آنجایی که در سطح خطای 0.05 (۵٪) آزمون باید انجام شود، با مقایسه مقدار احتمال و سطح خطا متوجه می‌شویم که فرض صفر رد نمی‌شود. زیرا 0.0636 > 0.05 است.

مشکلات در تفسیر مقدار احتمال

اغلب در بیان توصیفی که مقدار احتمال ارائه می‌کند، مشکلاتی در بین دانشجویان دیده می‌شود.

  • مقدار احتمال، احتمال خطای نوع اول نیست. زیرا این مقدار براساس نمونه تصادفی محاسبه می‌شود ولی احتمال خطای نوع اول براساس متغیر تصادفی آماره آزمون بدست می‌آید.
  • از مقدار احتمال به عنوان یک معیار استفاده می‌شود و نمی‌توان از آن تفسیرهایی که در ادامه آمده است را ارائه داد؛ مثلا اگر مقدار احتمال نزدیک α\alpha بود نباید گفته شود که «تقریبا در بیشتر مواقع فرض صفر رد می‌شود» یا فاصله زیاد مقدار احتمال با α\alpha باعث شود که بگوییم «با اطمینان زیاد می‌توان فرض صفر را رد کرد» و ... .
بر اساس رای ۱۱۱ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
دانلود PDF مقاله
۱۰ دیدگاه برای «مقدار احتمال (p–Value) در آزمون فرض آماری – به زبان ساده»

درود ، مثلن فرض ما بر اين است كه با افرايش سن ماهى وزن ان هم افزايش مى يابد حالا اگه p value اينجا كوچتر از ٠.٠٥ در بياد ما فرض صفر رو رد مى كنيم . خوب حالا اين يعنى فرضى كه داشتيم بر مبناى ارتباط وزن ماهى و سنش درسته ؟ يعنى هر چه سن بالا ميرهوزن هم افزايش پيدا مى كنه؟

آقای دکتر دست شما درد نکنه مطالبتون عالیه و اطلاعات زیادی از شما یاد گرفتم

سلام.
آیا p value با حجم نمونه رابطه داره؟
اگر بله فرمولی داریم که این رابطه رو نشون بده؟

سلام دوست عزیز،

مقدار p-value برحسب نمونه تصادفی بدست می‌آید. در فرمول یا رابطه مربوط به p-value، اثری از حجم نمونه نیست. ولی آماره آزمون که براساس توزیع آن مقدار p-value محاسبه می‌شود، ممکن است به حجم نمونه بستگی داشته باشد. بنابراین قانون کلی برای آن نمی‌توان در نظر گرفت.
البته خطای نوع دوم یا توان آزمون به حجم نمونه بستگی دارد که معمولا با افزایش حجم نمونه توان آزمون را افزایش می‌دهند.

از این که همراه مجله فرادرس هستید سپاسگزاریم.

تندرست و پیروز باشید.

میشه راهنمایی کنید چیزی که من فهمیدم درست هست یا نه ؟
اگر مقدار پی ما بیشتر از آلفا (که معمولا پنج درصد هست) باشه یعنی ما نمی تونیم فرض صفر رو رد کنیم. اگر کمتر باشه فرض صفر رو رد می کنیم . هر چی که پی ولیو به صفر نزدیک تر باشددلایل قوی تری برای رد فرض صفر داریم ؟ درسته ؟

سپاسگزار

سلام اگه ما یه عدد برای بر pداشته باشیم چطوری میتونیم میزان f رو محاسبه کنیم ؟

این چه جور تدریسیه آخه، خودمون بلد بودیم از روی متن بخونیم!

سلام دلیل صفر شدن پی ولیو چیست ؟ و جواب پرسشنامه چجوری باید باشه که پی ولیو بیشتر از پنج صدم شود

سلام وقت بخیر.
سپاس از مطالب ارزشمندتون.
ممنون میشم پاسخ بدید که p value=1 در آزمون کای اسکوئر جدول توافقی ۲ در ۲ به چه معناست؟

سلام و درود
از اینکه مطالب وبلاگ فرادرس را دنبال می‌کنید بسیار خرسنیدم.
در پاسخ به سوال شما باید گفت که مقدار احتمال (پی ولیو) صفر نخواهد شد، بلکه مقدار آن ممکن است بسیار به صفر نزدیک باشد. در این حالت در بیشتر نرم‌افزارهای محاسبات آماری به علت گرد کردن نتایج اعداد اعشاری، این مقدار به نظر برابر با صفر می‌رسد. از طرفی هر چه پاسخ‌های پرسشنامه در جهت تایید فرض صفر باشند، مقدار احتمال بزرگ شده و نمونه حاصل دلیلی برای رد فرض صفر ارائه نخواهد داد.
باز هم از اینکه همراه فرادرس هستید سپاسگزاریم و امیدواریم که همیشه همراه فرادرس باشید.

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *