یافتن دور همیلتونی با الگوریتم پس گرد — به زبان ساده

۵۷۳ بازدید
آخرین به‌روزرسانی: ۱۰ تیر ۱۴۰۲
زمان مطالعه: ۱۳ دقیقه
یافتن دور همیلتونی با الگوریتم پس گرد

«مسیر همیلتونی» (Hamiltonian Path) در یک گراف غیر جهت‌دار، مسیری است که در آن هر «راس» (Vertex) دقیقا یک‌بار مشاهده می‌شود. یک «دور همیلتونی» یا «مدار همیلتونی» (Hamiltonian Cycle | Hamiltonian Circuit)، یک مسیر همیلتونی است که در آن از آخرین راس به اولین راس یک «یال» (Edge) وجود دارد. در ادامه، روشی جهت بررسی اینکه آیا در یک گراف داده شده، دور همیلتونی وجود دارد یا خیر بررسی می‌شود. همچنین، در  صورت وجود دور، مسیر آن را چاپ می‌کند. در واقع، با استفاده از یک روش ساده و یک روش «پس‌گرد» (Backtracking)، بررسی می‌شود که آیا در یک گراف دور همیلتونی وجود دارد یا خیر و در صورت وجود، مسیر در خروجی چاپ می‌شود. ورودی و خروجی تابع لازم برای این کار به صورت زیر هستند.

یافتن دور همیلتونی در گراف

برای یافتن دور همیلتونی در گراف، به طور کلی به صورت زیر عمل می‌شود.

ورودی:

یک آرایه دوبُعدی [graph[V][V که در آن V تعداد راس‌ها در گراف و [graph[V][V «ماتریس همسایگی» (Adjacency Matrix) گراف است. مقدار [graph[i][j در صورت وجود یک یال مستقیم از راس i به راس j برابر با یک و در غیر این صورت، [graph[i][j برابر با صفر است.

خروجی:

یک آرایه [path[V باید حاوی یک مسیر همیلتونی باشد. [path[i باید راس i در مسیر همیلتونی را نمایش دهد. همچنین، کد باید مقدار false را در صورت عدم وجود دور همیلتونی در گراف، بازگرداند.

برای مثال، دور همیلتونی در گراف زیر به صورت {۰ ،۳ ،۴ ،۲ ،۱ ، ۰} است.

(0)--(1)--(2)
|    / \   |
|    / \   | 
|    / \   |
(3)-------(4)

گراف زیر حاوی هیچ دور همیلتونی نیست.

(0)--(1)--(2)
|    / \   |
|    / \   | 
|    / \   |
(3)       (4)

الگوریتم ساده (Naive Algorithm)

الگوریتم ساده‌ای که در زیر ارائه شده، همه پیکربندی‌های ممکن برای راس‌ها را ارائه می‌کند و پیکربندی که محدودیت های داده شده را ارضا می‌کند، باز می‌گرداند. به تعداد !n، پیکربندی ممکن وجود دارد.

while there are untried conflagrations
{
   generate the next configuration
   if ( there are edges between two consecutive vertices of this
      configuration and there is an edge from the last vertex to 
      the first ).
   {
      print this configuration;
      break;
   }
}

یافتن دور همیلتونی با الگوریتم پس‌گرد (Backtracking Algorithm)

این الگوریتم یک آرایه مسیر خالی می‌سازد و راس ۰ را به آن اضافه می‌کند.

در ادامه، دیگر راس‌ها را با آغاز از راس ۱ به آرایه اضافه می‌کند؛ اما پیش از اضافه کردن یک راس، بررسی می‌کند که آیا با راس پیشین اضافه شده مجاور است یا خیر و همچنین، بررسی می‌کند که راس، پیش از این به آرایه اضافه نشده باشد. اگر چنین راسی پیدا شود، یال به عنوان بخشی از راهکار اضافه می‌شود. اگر راس پیدا نشود، مقدار false بازگردانده می‌شود.

پیاده‌سازی الگوریتم پس‌گرد برای مساله یافتن دور همیلتونی در گراف

در ادامه، پیاده‌سازی الگوریتم پس‌گرد برای مساله یافتن دور همیلتونی در گراف در زبان‌های برنامه‌نویسی گوناگون ارائه شده است.

++C

/* C++ program for solution of Hamiltonian  
Cycle problem using backtracking */
#include <bits/stdc++.h> 
using namespace std; 
  
// Number of vertices in the graph  
#define V 5  
  
void printSolution(int path[]);  
  
/* A utility function to check if  
the vertex v can be added at index 'pos'  
in the Hamiltonian Cycle constructed  
so far (stored in 'path[]') */
bool isSafe(int v, bool graph[V][V],  
            int path[], int pos)  
{  
    /* Check if this vertex is an adjacent  
    vertex of the previously added vertex. */
    if (graph [path[pos - 1]][ v ] == 0)  
        return false;  
  
    /* Check if the vertex has already been included.  
    This step can be optimized by creating 
    an array of size V */
    for (int i = 0; i < pos; i++)  
        if (path[i] == v)  
            return false;  
  
    return true;  
}  
  
/* A recursive utility function  
to solve hamiltonian cycle problem */
bool hamCycleUtil(bool graph[V][V],  
                  int path[], int pos)  
{  
    /* base case: If all vertices are  
    included in Hamiltonian Cycle */
    if (pos == V)  
    {  
        // And if there is an edge from the  
        // last included vertex to the first vertex  
        if (graph[path[pos - 1]][path[0]] == 1)  
            return true;  
        else
            return false;  
    }  
  
    // Try different vertices as a next candidate  
    // in Hamiltonian Cycle. We don't try for 0 as  
    // we included 0 as starting point in in hamCycle()  
    for (int v = 1; v < V; v++)  
    {  
        /* Check if this vertex can be added  
        // to Hamiltonian Cycle */
        if (isSafe(v, graph, path, pos))  
        {  
            path[pos] = v;  
  
            /* recur to construct rest of the path */
            if (hamCycleUtil (graph, path, pos + 1) == true)  
                return true;  
  
            /* If adding vertex v doesn't lead to a solution,  
            then remove it */
            path[pos] = -1;  
        }  
    }  
  
    /* If no vertex can be added to  
    Hamiltonian Cycle constructed so far,  
    then return false */
    return false;  
}  
  
/* This function solves the Hamiltonian Cycle problem  
using Backtracking. It mainly uses hamCycleUtil() to  
solve the problem. It returns false if there is no  
Hamiltonian Cycle possible, otherwise return true  
and prints the path. Please note that there may be  
more than one solutions, this function prints one  
of the feasible solutions. */
bool hamCycle(bool graph[V][V])  
{  
    int *path = new int[V];  
    for (int i = 0; i < V; i++)  
        path[i] = -1;  
  
    /* Let us put vertex 0 as the first vertex in the path. 
    If there is a Hamiltonian Cycle, then the path can be  
    started from any point of the cycle as the graph is undirected */
    path[0] = 0;  
    if (hamCycleUtil(graph, path, 1) == false )  
    {  
        cout << "\nSolution does not exist";  
        return false;  
    }  
  
    printSolution(path);  
    return true;  
}  
  
/* A utility function to print solution */
void printSolution(int path[])  
{  
    cout << "Solution Exists:"
            " Following is one Hamiltonian Cycle \n";  
    for (int i = 0; i < V; i++)  
        cout << path[i] << " ";  
  
    // Let us print the first vertex again 
    // to show the complete cycle  
    cout << path[0] << " ";  
    cout << endl; 
}  
  
// Driver Code  
int main()  
{  
    /* Let us create the following graph  
        (0)--(1)--(2)  
        | / \ |  
        | / \ |  
        | / \ |  
        (3)-------(4) */
    bool graph1[V][V] = {{0, 1, 0, 1, 0},  
                        {1, 0, 1, 1, 1},  
                        {0, 1, 0, 0, 1},  
                        {1, 1, 0, 0, 1},  
                        {0, 1, 1, 1, 0}};  
      
    // Print the solution  
    hamCycle(graph1);  
      
    /* Let us create the following graph  
    (0)--(1)--(2)  
    | / \ |  
    | / \ |  
    | / \ |  
    (3) (4) */
    bool graph2[V][V] = {{0, 1, 0, 1, 0},  
                         {1, 0, 1, 1, 1},  
                         {0, 1, 0, 0, 1},  
                         {1, 1, 0, 0, 0},  
                         {0, 1, 1, 0, 0}};  
  
    // Print the solution  
    hamCycle(graph2);  
  
    return 0;  
}  
  
// This is code is contributed by rathbhupendra 

C

/* C program for solution of Hamiltonian Cycle problem 
   using backtracking */
#include<stdio.h> 
  
// Number of vertices in the graph 
#define V 5 
  
void printSolution(int path[]); 
  
/* A utility function to check if the vertex v can be added at 
   index 'pos' in the Hamiltonian Cycle constructed so far (stored 
   in 'path[]') */
bool isSafe(int v, bool graph[V][V], int path[], int pos) 
{ 
    /* Check if this vertex is an adjacent vertex of the previously 
       added vertex. */
    if (graph [ path[pos-1] ][ v ] == 0) 
        return false; 
  
    /* Check if the vertex has already been included. 
      This step can be optimized by creating an array of size V */
    for (int i = 0; i < pos; i++) 
        if (path[i] == v) 
            return false; 
  
    return true; 
} 
  
/* A recursive utility function to solve hamiltonian cycle problem */
bool hamCycleUtil(bool graph[V][V], int path[], int pos) 
{ 
    /* base case: If all vertices are included in Hamiltonian Cycle */
    if (pos == V) 
    { 
        // And if there is an edge from the last included vertex to the 
        // first vertex 
        if ( graph[ path[pos-1] ][ path[0] ] == 1 ) 
           return true; 
        else
          return false; 
    } 
  
    // Try different vertices as a next candidate in Hamiltonian Cycle. 
    // We don't try for 0 as we included 0 as starting point in in hamCycle() 
    for (int v = 1; v < V; v++) 
    { 
        /* Check if this vertex can be added to Hamiltonian Cycle */
        if (isSafe(v, graph, path, pos)) 
        { 
            path[pos] = v; 
  
            /* recur to construct rest of the path */
            if (hamCycleUtil (graph, path, pos+1) == true) 
                return true; 
  
            /* If adding vertex v doesn't lead to a solution, 
               then remove it */
            path[pos] = -1; 
        } 
    } 
  
    /* If no vertex can be added to Hamiltonian Cycle constructed so far, 
       then return false */
    return false; 
} 
  
/* This function solves the Hamiltonian Cycle problem using Backtracking. 
  It mainly uses hamCycleUtil() to solve the problem. It returns false 
  if there is no Hamiltonian Cycle possible, otherwise return true and 
  prints the path. Please note that there may be more than one solutions, 
  this function prints one of the feasible solutions. */
bool hamCycle(bool graph[V][V]) 
{ 
    int *path = new int[V]; 
    for (int i = 0; i < V; i++) 
        path[i] = -1; 
  
    /* Let us put vertex 0 as the first vertex in the path. If there is 
       a Hamiltonian Cycle, then the path can be started from any point 
       of the cycle as the graph is undirected */
    path[0] = 0; 
    if ( hamCycleUtil(graph, path, 1) == false ) 
    { 
        printf("\nSolution does not exist"); 
        return false; 
    } 
  
    printSolution(path); 
    return true; 
} 
  
/* A utility function to print solution */
void printSolution(int path[]) 
{ 
    printf ("Solution Exists:"
            " Following is one Hamiltonian Cycle \n"); 
    for (int i = 0; i < V; i++) 
        printf(" %d ", path[i]); 
  
    // Let us print the first vertex again to show the complete cycle 
    printf(" %d ", path[0]); 
    printf("\n"); 
} 
  
// driver program to test above function 
int main() 
{ 
   /* Let us create the following graph 
      (0)--(1)--(2) 
       |   / \   | 
       |  /   \  | 
       | /     \ | 
      (3)-------(4)    */
   bool graph1[V][V] = {{0, 1, 0, 1, 0}, 
                      {1, 0, 1, 1, 1}, 
                      {0, 1, 0, 0, 1}, 
                      {1, 1, 0, 0, 1}, 
                      {0, 1, 1, 1, 0}, 
                     }; 
  
    // Print the solution 
    hamCycle(graph1); 
  
   /* Let us create the following graph 
      (0)--(1)--(2) 
       |   / \   | 
       |  /   \  | 
       | /     \ | 
      (3)       (4)    */
    bool graph2[V][V] = {{0, 1, 0, 1, 0}, 
                      {1, 0, 1, 1, 1}, 
                      {0, 1, 0, 0, 1}, 
                      {1, 1, 0, 0, 0}, 
                      {0, 1, 1, 0, 0}, 
                     }; 
  
    // Print the solution 
    hamCycle(graph2); 
  
    return 0; 
}

پایتون

# Python program for solution of 
# hamiltonian cycle problem 
  
class Graph(): 
    def __init__(self, vertices): 
        self.graph = [[0 for column in range(vertices)]\ 
                            for row in range(vertices)] 
        self.V = vertices 
  
    ''' Check if this vertex is an adjacent vertex  
        of the previously added vertex and is not  
        included in the path earlier '''
    def isSafe(self, v, pos, path): 
        # Check if current vertex and last vertex  
        # in path are adjacent 
        if self.graph[ path[pos-1] ][v] == 0: 
            return False
  
        # Check if current vertex not already in path 
        for vertex in path: 
            if vertex == v: 
                return False
  
        return True
  
    # A recursive utility function to solve  
    # hamiltonian cycle problem 
    def hamCycleUtil(self, path, pos): 
  
        # base case: if all vertices are  
        # included in the path 
        if pos == self.V: 
            # Last vertex must be adjacent to the  
            # first vertex in path to make a cyle 
            if self.graph[ path[pos-1] ][ path[0] ] == 1: 
                return True
            else: 
                return False
  
        # Try different vertices as a next candidate  
        # in Hamiltonian Cycle. We don't try for 0 as  
        # we included 0 as starting point in in hamCycle() 
        for v in range(1,self.V): 
  
            if self.isSafe(v, pos, path) == True: 
  
                path[pos] = v 
  
                if self.hamCycleUtil(path, pos+1) == True: 
                    return True
  
                # Remove current vertex if it doesn't  
                # lead to a solution 
                path[pos] = -1
  
        return False
  
    def hamCycle(self): 
        path = [-1] * self.V 
  
        ''' Let us put vertex 0 as the first vertex  
            in the path. If there is a Hamiltonian Cycle,  
            then the path can be started from any point 
            of the cycle as the graph is undirected '''
        path[0] = 0
  
        if self.hamCycleUtil(path,1) == False: 
            print "Solution does not exist\n"
            return False
  
        self.printSolution(path) 
        return True
  
    def printSolution(self, path): 
        print "Solution Exists: Following is one Hamiltonian Cycle"
        for vertex in path: 
            print vertex, 
        print path[0], "\n"
  
# Driver Code 
  
''' Let us create the following graph 
      (0)--(1)--(2) 
       |   / \   | 
       |  /   \  | 
       | /     \ | 
      (3)-------(4)    '''
g1 = Graph(5) 
g1.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1],  
             [0, 1, 0, 0, 1,],[1, 1, 0, 0, 1],  
             [0, 1, 1, 1, 0], ] 
  
# Print the solution 
g1.hamCycle(); 
  
''' Let us create the following graph 
      (0)--(1)--(2) 
       |   / \   | 
       |  /   \  | 
       | /     \ | 
      (3)       (4)    '''
g2 = Graph(5) 
g2.graph = [ [0, 1, 0, 1, 0], [1, 0, 1, 1, 1],  
           [0, 1, 0, 0, 1,], [1, 1, 0, 0, 0],  
           [0, 1, 1, 0, 0], ] 
  
# Print the solution 
g2.hamCycle(); 
  
# This code is contributed by Divyanshu Mehta 

جاوا

/* Java program for solution of Hamiltonian Cycle problem 
   using backtracking */
class HamiltonianCycle 
{ 
    final int V = 5; 
    int path[]; 
  
    /* A utility function to check if the vertex v can be 
       added at index 'pos'in the Hamiltonian Cycle 
       constructed so far (stored in 'path[]') */
    boolean isSafe(int v, int graph[][], int path[], int pos) 
    { 
        /* Check if this vertex is an adjacent vertex of 
           the previously added vertex. */
        if (graph[path[pos - 1]][v] == 0) 
            return false; 
  
        /* Check if the vertex has already been included. 
           This step can be optimized by creating an array 
           of size V */
        for (int i = 0; i < pos; i++) 
            if (path[i] == v) 
                return false; 
  
        return true; 
    } 
  
    /* A recursive utility function to solve hamiltonian 
       cycle problem */
    boolean hamCycleUtil(int graph[][], int path[], int pos) 
    { 
        /* base case: If all vertices are included in 
           Hamiltonian Cycle */
        if (pos == V) 
        { 
            // And if there is an edge from the last included 
            // vertex to the first vertex 
            if (graph[path[pos - 1]][path[0]] == 1) 
                return true; 
            else
                return false; 
        } 
  
        // Try different vertices as a next candidate in 
        // Hamiltonian Cycle. We don't try for 0 as we 
        // included 0 as starting point in in hamCycle() 
        for (int v = 1; v < V; v++) 
        { 
            /* Check if this vertex can be added to Hamiltonian 
               Cycle */
            if (isSafe(v, graph, path, pos)) 
            { 
                path[pos] = v; 
  
                /* recur to construct rest of the path */
                if (hamCycleUtil(graph, path, pos + 1) == true) 
                    return true; 
  
                /* If adding vertex v doesn't lead to a solution, 
                   then remove it */
                path[pos] = -1; 
            } 
        } 
  
        /* If no vertex can be added to Hamiltonian Cycle 
           constructed so far, then return false */
        return false; 
    } 
  
    /* This function solves the Hamiltonian Cycle problem using 
       Backtracking. It mainly uses hamCycleUtil() to solve the 
       problem. It returns false if there is no Hamiltonian Cycle 
       possible, otherwise return true and prints the path. 
       Please note that there may be more than one solutions, 
       this function prints one of the feasible solutions. */
    int hamCycle(int graph[][]) 
    { 
        path = new int[V]; 
        for (int i = 0; i < V; i++) 
            path[i] = -1; 
  
        /* Let us put vertex 0 as the first vertex in the path. 
           If there is a Hamiltonian Cycle, then the path can be 
           started from any point of the cycle as the graph is 
           undirected */
        path[0] = 0; 
        if (hamCycleUtil(graph, path, 1) == false) 
        { 
            System.out.println("\nSolution does not exist"); 
            return 0; 
        } 
  
        printSolution(path); 
        return 1; 
    } 
  
    /* A utility function to print solution */
    void printSolution(int path[]) 
    { 
        System.out.println("Solution Exists: Following" + 
                           " is one Hamiltonian Cycle"); 
        for (int i = 0; i < V; i++) 
            System.out.print(" " + path[i] + " "); 
  
        // Let us print the first vertex again to show the 
        // complete cycle 
        System.out.println(" " + path[0] + " "); 
    } 
  
    // driver program to test above function 
    public static void main(String args[]) 
    { 
        HamiltonianCycle hamiltonian = 
                                new HamiltonianCycle(); 
        /* Let us create the following graph 
           (0)--(1)--(2) 
            |   / \   | 
            |  /   \  | 
            | /     \ | 
           (3)-------(4)    */
        int graph1[][] = {{0, 1, 0, 1, 0}, 
            {1, 0, 1, 1, 1}, 
            {0, 1, 0, 0, 1}, 
            {1, 1, 0, 0, 1}, 
            {0, 1, 1, 1, 0}, 
        }; 
  
        // Print the solution 
        hamiltonian.hamCycle(graph1); 
  
        /* Let us create the following graph 
           (0)--(1)--(2) 
            |   / \   | 
            |  /   \  | 
            | /     \ | 
           (3)       (4)    */
        int graph2[][] = {{0, 1, 0, 1, 0}, 
            {1, 0, 1, 1, 1}, 
            {0, 1, 0, 0, 1}, 
            {1, 1, 0, 0, 0}, 
            {0, 1, 1, 0, 0}, 
        }; 
  
        // Print the solution 
        hamiltonian.hamCycle(graph2); 
    } 
} 
// This code is contributed by Abhishek Shankhadhar

سی شارپ

// C# program for solution of Hamiltonian  
// Cycle problem using backtracking 
using System; 
  
public class HamiltonianCycle 
{ 
    readonly int V = 5; 
    int []path; 
  
    /* A utility function to check  
    if the vertex v can be added at  
    index 'pos'in the Hamiltonian Cycle 
    constructed so far (stored in 'path[]') */
    bool isSafe(int v, int [,]graph, 
                int []path, int pos) 
    { 
        /* Check if this vertex is  
        an adjacent vertex of the 
        previously added vertex. */
        if (graph[path[pos - 1], v] == 0) 
            return false; 
  
        /* Check if the vertex has already  
        been included. This step can be 
        optimized by creating an array 
        of size V */
        for (int i = 0; i < pos; i++) 
            if (path[i] == v) 
                return false; 
  
        return true; 
    } 
  
    /* A recursive utility function 
    to solve hamiltonian cycle problem */
    bool hamCycleUtil(int [,]graph, int []path, int pos) 
    { 
        /* base case: If all vertices  
        are included in Hamiltonian Cycle */
        if (pos == V) 
        { 
            // And if there is an edge from the last included 
            // vertex to the first vertex 
            if (graph[path[pos - 1],path[0]] == 1) 
                return true; 
            else
                return false; 
        } 
  
        // Try different vertices as a next candidate in 
        // Hamiltonian Cycle. We don't try for 0 as we 
        // included 0 as starting point in in hamCycle() 
        for (int v = 1; v < V; v++) 
        { 
            /* Check if this vertex can be  
            added to Hamiltonian Cycle */
            if (isSafe(v, graph, path, pos)) 
            { 
                path[pos] = v; 
  
                /* recur to construct rest of the path */
                if (hamCycleUtil(graph, path, pos + 1) == true) 
                    return true; 
  
                /* If adding vertex v doesn't  
                lead to a solution, then remove it */
                path[pos] = -1; 
            } 
        } 
  
        /* If no vertex can be added to Hamiltonian Cycle 
        constructed so far, then return false */
        return false; 
    } 
  
    /* This function solves the Hamiltonian  
    Cycle problem using Backtracking. It  
    mainly uses hamCycleUtil() to solve the 
    problem. It returns false if there 
    is no Hamiltonian Cycle possible,  
    otherwise return true and prints the path. 
    Please note that there may be more than  
    one solutions, this function prints one  
    of the feasible solutions. */
    int hamCycle(int [,]graph) 
    { 
        path = new int[V]; 
        for (int i = 0; i < V; i++) 
            path[i] = -1; 
  
        /* Let us put vertex 0 as the first 
        vertex in the path. If there is a  
        Hamiltonian Cycle, then the path can be 
        started from any point of the cycle  
        as the graph is undirected */
        path[0] = 0; 
        if (hamCycleUtil(graph, path, 1) == false) 
        { 
            Console.WriteLine("\nSolution does not exist"); 
            return 0; 
        } 
  
        printSolution(path); 
        return 1; 
    } 
  
    /* A utility function to print solution */
    void printSolution(int []path) 
    { 
        Console.WriteLine("Solution Exists: Following" + 
                        " is one Hamiltonian Cycle"); 
        for (int i = 0; i < V; i++) 
            Console.Write(" " + path[i] + " "); 
  
        // Let us print the first vertex again 
        //  to show the complete cycle 
        Console.WriteLine(" " + path[0] + " "); 
    } 
  
    // Driver code 
    public static void Main(String []args) 
    { 
        HamiltonianCycle hamiltonian = 
                                new HamiltonianCycle(); 
        /* Let us create the following graph 
        (0)--(1)--(2) 
            | / \ | 
            | / \ | 
            | /     \ | 
        (3)-------(4) */
        int [,]graph1= {{0, 1, 0, 1, 0}, 
            {1, 0, 1, 1, 1}, 
            {0, 1, 0, 0, 1}, 
            {1, 1, 0, 0, 1}, 
            {0, 1, 1, 1, 0}, 
        }; 
  
        // Print the solution 
        hamiltonian.hamCycle(graph1); 
  
        /* Let us create the following graph 
        (0)--(1)--(2) 
            | / \ | 
            | / \ | 
            | /     \ | 
        (3)     (4) */
        int [,]graph2 = {{0, 1, 0, 1, 0}, 
            {1, 0, 1, 1, 1}, 
            {0, 1, 0, 0, 1}, 
            {1, 1, 0, 0, 0}, 
            {0, 1, 1, 0, 0}, 
        }; 
  
        // Print the solution 
        hamiltonian.hamCycle(graph2); 
    } 
} 
  
// This code contributed by Rajput-Ji

خروجی:

Solution Exists: Following is one Hamiltonian Cycle
 0  1  2  4  3  0

Solution does not exist

توجه به این نکته لازم است که قطعه کد بالا، همیشه دورهایی که از صفر شروع می‌شوند را چاپ می‌کند. نقطه شروع نباید اهمیتی داشته باشد، زیرا یک دور می‌تواند از هر راسی آغاز شود.

افرادی که قصد تغییر دادن نقطه شروع را دارند، باید دو تغییر در کد بالا اعمال کنند. تغییر «;path[0] = 0» به «;path[0] = s» که در آن، s نقطه شروع جدید است. همچنین، باید حلقه «(++for (int v = 1; v < V; v» در ()hamCycleUtil، به «(++for (int v = 0; v < V; v» تغییر پیدا کند.

اگر نوشته بالا برای شما مفید بوده است، آموزش‌های زیر نیز به شما پیشنهاد می‌شوند:

^^

بر اساس رای ۴ نفر
آیا این مطلب برای شما مفید بود؟
شما قبلا رای داده‌اید!
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
GeeksforGeeks

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *