روش‌های استاندارد سازی داده ها

۱۱۰۷۰ بازدید
آخرین به‌روزرسانی: ۱ خرداد ۱۴۰۲
زمان مطالعه: ۷ دقیقه
دانلود PDF مقاله
روش‌های استاندارد سازی داده ها

قبل از انجام هر گونه تحلیلی روی داده‌ها، باید آن‌ها را استاندارد کرد. بخصوص زمانی که داده‌ها چند بُعدی باشند. استفاده از داده‌های استاندارد نشده ممکن است روی نتایج حاصل از تحلیل‌ها اثر نامناسبی داشته باشد. به همین جهت در این نوشتار به روش‌های استاندارد سازی داده ها خواهیم پرداخت.

997696

استاندارد سازی داده

استاندارد سازی داده‌ کمک می‌کند که اهمیت آن‌ها به واحد اندازه‌گیری‌شان بستگی نداشته باشد. در نتیجه در مواردی مانند داده‌کاوی و تحلیل داده‌های چند متغیره از داده‌های استاندارد شده استفاده می‌شود.

شایان ذکر است که استاندارد‌سازی برای داده‌های کمی و کیفی قابل اجرا است ولی در این نوشتار به بررسی روش‌های استانداردسازی برای داده‌های کمی می‌پردازیم و چند روش استانداردسازی را با هم مقایسه می‌کنیم.

نمره استاندارد Z1

برای تبدیل داده‌ها از توزیع نرمال به نرمال استاندارد از «نمره استاندارد» (Z-Score) استفاده می‌شود. حتی اگر داده‌ها توزیعی شبیه نرمال نیز داشته باشند باز هم تبدیل آن‌ها به نمره استاندارد می‌تواند مفید باشد. رابطه‌ بین نمره استاندارد و مقدار واقعی به صورت زیر است:

Zi=XiμσZ_i=\frac{X_i-\mu}{\sigma}

لازم به ذکر است در فرمول بالا ZiZ_i‌ نمره استاندارد برای داده XiX_i است و μ\mu‌ میانگین و σ\sigma انحراف معیار برای داده‌ها است. با این کار ZiZ_iها دارای میانگین ۰ و واریانس ۱ می‌شوند.

اگر داده‌ها یک نمونه از جامعه آماری باشند، نمره استاندارد، براساس میانگین و انحراف استاندارد نمونه‌ای محاسبه می‌شود.

Zi=XiXˉSZ_i=\frac{X_i-\bar X}{S}

در فرمول بالا ZiZ_i‌ نمره استاندارد برای داده XiX_i است و Xˉ\bar X‌ میانگین و S انحراف معیار نمونه محسوب می‌شود. با این کار ZiZ_iها باز هم دارای میانگین ۰ و واریانس ۱ می‌شوند.

normal-distribution-and-sampling-distribution

پس با این تبدیل می‌توانید مقدارهایی تولید کنید که خصوصیات اصلی آن‌ها مانند مرکز (میانگین) و مقیاس (واریانس) ثابت باشند. نمره‌های استاندارد در بیشتر مواقع بین دو مقدار 3-3 تا 3 قرار می‌گیرند.

به این ترتیب بعضی از نمره‌های استاندارد، منفی (کوچکتر از میانگین) و بعضی مثبت (بزرگتر از میانگین) خواهند بود. اگر نمره‌ استاندارد برای مقداری برابر با ۰ باشد،‌ معلوم می‌شود که آن مقدار با میانگین برابر است.

همچنین از نمرات استاندارد برای مقایسه مقادیری استفاده می‌شود که ممکن است دارای واحد‌های متفاوتی باشند.

مثال

امتیاز «مدرس الف» در دانشکده ریاضی برابر با 13 است. میانگین و انحراف استاندارد امتیازات در این دانشکده نیز به ترتیب برابر با ۱۰ و ۳ است. «مدرس ب» در دانشکده برق نیز دارای امتیاز ۱۵ است. ولی میانگین و انحراف استاندارد امتیازات در این دانشکده به ترتیب ۱۷ و ۴ است. برای مقایسه این دو مدرس توجه به امتیاز هر یک به تنهایی کافی نیست. باید مشخص شود که این امتیازات بر مبنای میانگین و انحراف استاندارد به چه ترتیب قرار می‌گیرند. برای آنکه بتوان تفاوت امکانات در هر دو دانشکده را نادیده گرفت (واحد اندازه امتیازات را از بین برد) از نمره استاندارد هر یک از مدرسین برای مقایسه استفاده می‌شود.

برای «مدرس الف» نمره استاندارد برابر با 13103=1\frac{13-10}{3}=1 و برای «مدرس ب» نمره استاندارد برابر با 15174=0.5\frac{15-17}{4}=-0.5 است. با توجه به نمره استاندارد این دو مدرس مشخص است که «مدرس الف» از کارایی بیشتری برخوردار است.

مثال

داده‌های مربوط به امتیاز 5 استاد دانشکده ریاضی و ۴ استاد دانشکده فیزیک در سطر دوم جدول قرار دارند. نمره‌های استاندارد Z1 آن‌ها نیز در سطر سوم جدول محاسبه شده است.

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱-فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴-فیزیک
امتیاز121311.510812589
Z10.841.230.650.06-0.710.841.88-0.71-0.32

نکته: محاسبه میانگین و انحراف استاندارد برای Z۱ باید براساس مقدار امتیازات همه استادها انجام شود.

همانطور که دیده می‌شود استادهای دانشکده ریاضی دارای میانگین نمرات استاندارد بزرگتری هستند، پس استادهای این دانشکده توانمندتر هستند.

برای آشنایی بیشتر با نحوه محاسبه و خصوصیات میانگین، مطلب روش یافتن میانگین – به زبان ساده و برای انحراف معیار، مطلب واریانس و انحراف معیار — یک راهنمای جامع به زبان کاملاً ساده را مطالعه نمایید.

نمره استاندارد Z2

نمره استاندارد Z1 هم مرکز و هم مقیاس داده‌ها را ثابت می‌کند. ولی اگر هدف از استاندارد‌سازی فقط یکسان‌سازی مقیاس باشد، می‌توان از یک نمره بدون واحد به نام Zاستفاده کرد که گاهی با عنوان «انحراف استاندارد اصلاح نشده وزنی» (Weighted Uncorrected Standard Deviation- USTD) نیز نامیده می‌شود. شیوه محاسبه آن‌ها در ادامه آمده است.

Z2=USTD=XSZ_2=USTD= \frac{X}{S}

می‌بایست اشاره کنیم که در این روش محاسباتی S‌ انحراف استاندارد نمونه است.

از آنجایی که در مخرج کسر، انحراف معیار قرار دارد، این نسبت نشان می‌دهد که هر مقدار چند برابر انحراف معیار است، بدون آنکه نسبت به میانگین یا مرکز داده‌ها اصلاحی در نظر گرفته شود.

با این تبدیل، میانگین نمرات USTD‌ یا Z2 برابر با XˉS\frac{\bar X}{S} و انحراف معیار آن‌ها برابر با ۱ خواهد بود.

data standardization

مثال

برای مثال مربوط به مدرس‌ها با توجه به انحراف استاندارد هر دانشکده،‌ نمره USTD‌ «مدرس الف» برابر با 133=4.33\frac{13}{3}=4.33‌ و برای «مدرس ب» 154=3.75\frac{15}{4}=3.75 خواهد بود. باز هم به این ترتیب مشخص می‌شود که «مدرس الف» دارای امتیاز بیشتری است.

همچنین برای مثالِ استادان، نمرات استاندارد Z۲ در جدول زیر دیده می‌شود.

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱- فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴- فیزیک
امتیاز121311.510812589
نمره استاندارد Z۲4.665.054.473.893.114.661.943.113.50

نکته: محاسبه انحراف استاندارد برای Z2 باید براساس مقدار امتیازات همه استادها انجام شود.

با توجه به بزرگتر بودن متوسط نمرات دانشکده ریاضی، کارایی این دانشکده از دانشکده فیزیک بیشتر است.

ضمناً بر حسب نحوه محاسبه برای نمره استاندارد Z1Z_1 و Z2Z_2 می‌توان مشاهده کرد که یک رابطه خطی به صورت زیر بین این دو برقرار است. در نتیجه می‌توان یکی را بر مبنای دیگری محاسبه کرد.

Z1=Z2+XˉSZ_1=Z_2+\frac{\bar X}{S}

نمره استاندارد Z3

بر اساس روش نمره استاندارد Z3، می‌توان میزان نزدیکی هر یک از مقدارها را به حداکثر آن‌ها به صورت نسبی بیان کرد. شکل محاسباتی برای آن نیز به صورت زیر است:

Z3=XMax(X)Z_3=\frac{X}{Max(X)}

با این کار کران بالا برای نمره‌های استاندارد Z3 برابر با ۱ خواهد بود.

اگر همه مقدارها مثبت باشند، این نسبت را به صورت درصدی نیز می‌توان نشان داد. البته باید توجه داشت که برای مقدارهای منفی نمره استاندارد Z3 باید به شکلی محاسبه شود که درصد منفی ظاهر نشود. برای این کار کافی است مقدار مناسبی به همه داده‌ها بطور یکسان اضافه شود تا محاسبات منجر به تولید درصدهای مثبت شود. با این کار حدود نمره‌های استاندارد بین ۰ تا ۱ خواهند بود.

مثال

با توجه به داده‌های مثال استادهای دانشکده ریاضی و فیزیک، نمره‌های استاندارد Z3 آن‌ها در سطر سوم جدول محاسبه شده است.

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱- فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴- فیزیک
امتیاز121311.510812589
نمره استاندارد Z30.921.000.880.770.620.920.380.620.69

با توجه به این اعداد مشخص است که در دانشکده ریاضی متوسط نمره‌های استاندارد بیشتر از دانشکده فیزیک است. پس کارایی دانشکده ریاضی بهتر از دانشکده فیزیک محسوب می‌شود.

نکته: محاسبه مقدار حداکثر باید براساس مقدار امتیازات همه استادها انجام شود.

میانگین نمره‌های استاندارد در این حالت برابر با XˉMax(X)\dfrac{\bar X}{Max(X)} و  انحراف معیار آن نیز برابر با SMax(X)\dfrac{S}{Max(X)} خواهد بود.

نکته: مقدار پراکندگی نسبی Max(X)Min(X)Max(X)\frac {Max(X)-Min(X)}{Max (X)}  برای داده‌های اصلی و نمره‌های استاندارد Z3 تغییر نمی‌کند.

استفاده از نمره استاندارد Z3  باید با احتیاط انجام شود زیرا وجود یک مقدار خیلی بزرگ در مشاهدات، این نمره را برای بیشتر مقدارها کوچک می‌کند. این مقدار خیلی بزرگ، اغلب به «نقطه دور افتاده» (Outlier) معروف است.

نکته: از نمره استاندارد Z3 فقط در مواردی باید استفاده شود که داده‌های کمی از نوع نسبی هستند. داده‌های کمی از نوع نسبی در مقابل نوع فاصله‌ای قرار دارند. در این نوع داده صفر به معنی هیچ است در حالیکه داده فاصله‌ای، داده‌ای است که در آن صفر به صورت قراردادی در نظر گرفته می‌شود و به معنی هیچ نیست.

نمره‌های استاندارد Z4 و Z5

اگر برای برآورد انحراف معیار از «دامنه تغییرات» (Range) در محاسبه نمره استاندارد Z2 استفاده شود، شکل محاسبه به صورت زیر خواهد بود.

Z4=XMax(X)Min(X)Z_4= \frac{X}{Max(X)-Min(X)}

همچنین اگر به جای فاصله از مرکز در رابطه Z1، فاصله از حداقل نمرات ملاک قرار گیرد، نمره استاندارد جدیدی به نام نمره استاندارد Z5 بوجود خواهد آمد.

Z5=XMin(X)Max(X)Min(X)Z_5= \frac{X-Min(X)}{Max(X)-Min(X)}

با فرض اینکه مقدارها همگی مثبت باشند، نمره استاندارد Z5  بین ۰ تا ۱ تغییر خواهد کرد. البته یکی از نمره‌های استاندارد حتما برابر با ۰ (برای مقدار حداقل) و یکی هم برابر با ۱ (برای مقدار حداکثر) خواهد بود.

میانگین نمرات استاندارد Z4 برابر  XˉMax(X)Min(X)\dfrac{\bar X}{Max(X)-Min(X)} و برای Z5 نیز برابر با XˉMin(X)Max(X)Min(X)\dfrac{\bar X - Min(X)}{Max(X)-Min(X)} خواهد بود. همچنین انحراف معیار هر دو نیز برابر‌ است با SMax(X)Min(X)\dfrac{S}{Max(X)-Min(X)}.

مثال

برای داده‌های مربوط به مثال استادها نمرات استاندارد Z4 و Z5 در سطر سوم و چهارم قرار گرفته‌اند.

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱-فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴-فیزیک
امتیاز121311.510812589
1.501.631.441.251.001.500.631.001.13
0.881.000.810.630.380.880.000.380.50

با توجه به این اعداد مشخص است که در دانشکده ریاضی متوسط نمره‌های استاندارد بیشتر از دانشکده فیزیک است. پس کارایی دانشکده ریاضی بهتر از دانشکده فیزیک محسوب می‌شود.

نکته: محاسبه مقدار حداکثر و حداقل باید براساس مقدار امتیازات همه استادها انجام شود.

درست به مانند نمره استاندارد Z3، نمرات استاندارد Z4 و Z5 نیز تحت تاثیر مقدارهای دور افتاده قرار خواهند گرفت. بنابراین هنگام استفاده از آن‌ها باید وجود نقاط دور افتاده را بررسی کرد.

نکته: بین نمره‌های استاندارد Z4 و Z5 یک رابطه‌ خطی وجود دارد. بطوری که می‌توان به شکل زیر یکی را برحسب دیگری محاسبه کرد.

Z5=Z4Min(X)Max(X)Min(X)Z_5=Z_4 - \dfrac{Min(X)}{Max(X)-Min(X)}

نمره استاندارد Z6

اگر هر مقدار به حاصل جمع مقدارها تقسیم شود، یک نمره استاندارد شده بدست می‌آید که مجموع آن‌ها برابر با یک و میانگینشان نیز برابر با 1n\frac{1}{n} است ولی واریانس این نمره‌ها مقدار ثابتی نیست. شکل محاسباتی برای Z6 به صورت زیر است:

z6=XXz_6= \dfrac{X}{\sum X}

مثال

براساس امتیاز استادها در مثال قبل، جدول زیر برای مقایسه نمرات استاندارد Z6 آن‌ها تهیه شده است. (مجموع برای هر دانشکده به تفکیک محاسبه شده.)

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱- فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴-فیزیک
امتیاز121311.510812589
Z60.350.380.340.290.240.350.150.240.26

با توجه به این مقدارها به نظر می‌رسد که استادهای دانشکده ریاضی از متوسط امتیازات بیشتری نسبت به استادهای دانشکده فیزیک برخوردارند.

نکته: محاسبه مجموع باید براساس مقدار امتیازات همه استادها انجام شود.

رتبه Z7

روش دیگر برای از بین بردن واحد اندازه‌گیری مقدارها، استفاده از رتبه داده‌ها است. اگر به جای استفاده از داده‌ها،‌ رتبه‌ آن‌ها به کار گرفته شود، امکان مقایسه بین مقدارها با واحدهای اندازه‌گیری متفاوت بوجود می‌آید. چنانچه داده‌ها را از کوچک به بزرگ مرتب کنیم، مکان قرارگیری مقدارها، نشان دهنده رتبه آن‌ها است.

مثال

براساس رتبه Z7 برای استادها در مثال قبل، جدول زیر برای مقایسه آن‌ها تهیه شده است.

دانشکدهاستاد ۱- ریاضیاستاد ۲- ریاضیاستاد ۳- ریاضیاستاد ۴- ریاضیاستاد ۵- ریاضیاستاد ۱- فیزیکاستاد ۲- فیزیکاستاد ۳- فیزیکاستاد ۴-فیزیک
امتیاز121311.510812589
796527124

با توجه به این مقدارها به نظر می‌رسد که استادهای دانشکده ریاضی از متوسط رتبه‌های بزرگتری نسبت به گروه فیزیک برخوردارند. پس دانشکده ریاضی دانشکده بهتری است.

نکته: محاسبه رتبه‌ها باید براساس همه امتیازات انجام شود.

این روش برای استاندارد‌سازی داده‌ها در مقابل نقاط دورافتاده مقاوم است و بیشتر در زمینه‌های آمار ناپارامتری به کار گرفته می‌شود. میانگین Z7‌ برابر با (n+1)/2(n+1)/2 است و واریانس آن برابر با n+1(2n+1)6(n+1)4)\dfrac{n+1}{\dfrac{(2n+1)}{6}-\dfrac{(n+1)}{4})‌} محسوب می‌شود.

اگر مطلب بالا برای شما مفید بوده است، احتمالاً آموزش‌هایی که در ادامه آمده‌اند نیز برایتان کاربردی خواهند بود.

^^

بر اساس رای ۲۱ نفر
آیا این مطلب برای شما مفید بود؟
اگر بازخوردی درباره این مطلب دارید یا پرسشی دارید که بدون پاسخ مانده است، آن را از طریق بخش نظرات مطرح کنید.
منابع:
Wikipedia
۷ دیدگاه برای «روش‌های استاندارد سازی داده ها»

سلام در معادلات ساختاری مدل اندازه گیری با استفاده از داده های استاندارد داریم.محاسبه این استانداردبا فرمول زد معمولی است؟ممنونم

سلام و تشکر . چه فرقی بین استاندارد سازی دادهها و نرمال سازی دادهها وجود دارد ؟ سپاس

سلام دوست عزیز،

اغلب این دو واژه با یکدیگر و به یک معنی به کار می‌روند. منظور از استاندارد سازی و یا نرمال سازی، تغییر مقادیر به شکلی است که در یک بازه دلخواه تغییر کنند. برای مثال اگر به متن توجه کرده باشید، روش Z5 داده‌ها را در بازه ۱- تا ۱ قرار می‌دهد. از طرفی این روش‌های استاندارد سازی، مقیاس اندازه‌گیری را از بین می‌برند. برای مثال اگر داده ها براساس واحد کیلوگرم اندازه‌گیری شده باشند، زمانی که مقدار امتیاز Z score را برایشان محاسبه می‌کنید، واحدی برای نمایش بزرگی مقادیر وجود ندارد. این کار امکان مقایسه داده‌ها یا مقیاس‌های مختلف (مانند کیلوگرم-تن و انس) را می‌دهد.
از طرفی نرمال سازی گاهی به همان معنی استاندارد سازی تعبیر شده و گاهی به معنی تبدیل توزیع داده‌ها به توزیع نرمال است. تبدیل کاکس باکس یکی از همین روش‌ها محسوب می‌شود که داده‌های چوله را به توزیع نرمال نزدیک می‌کند.

از این که همراه مجله فرادرس هستید سپاسگزاریم.
پیروز و تندرست باشید.

سلام
آیا می توان از مفهوم تئوری اطلاعات و آنتروپی شانون برای نرمال سازی داده ها استفاده کرد؟

سلام و درود به شما همراه مجله فرادرس،

همانطور که در مطلب نظریه اطلاع و بی نظمی — مفاهیم اولیه می‌توانید بخوانید، ارتباط نزدیکی بین واریانس و اطلاع شانون وجود دارد. اگر از این جنبه به آنتروپی نگاه کنیم، می‌توانیم برای استاندارد سازی در مخرج کسر مربوط به مقدار Z از اطلاع شانون (یا عکس آن) استفاده کنیم تا داده‌ها را استاندارد کنیم.
البته به نظر من باید هدف از انجام این کار مشخص باشد. در اکثر مواقع، استاندارد سازی باعث از بین رفتن واحد اندازه‌گیری شده و در نتیجه امکان مقایسه بین مقدارها با واحدهای متفاوت میسر می‌شود.

از اینکه به مطالب مجله فرادرس توجه دارید سپاسگزاریم.
تندرست و پیروز باشید.

سلام
لطفا منبع این مطالب رو هم ذکر کنید ممنون

سلام .میشه لطفا استاندارد سازی داده های کیفی هم بیان کنید به چه صورت هست ممنون میشم

نظر شما چیست؟

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *