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Mini and micro robots, which can swim in an underwater environment, have 

drawn widespread research interests because of their potential applications to 

the clinical drug delivery, biotechnology, manufacturing, mobile sensor 

networks, etc. In this paper, a prototype of microrobot based on the motion 

principle of living microorganisms such as E. Coli Bacteria is presented. The 

properties of this propulsive mechanism are estimated by modeling the 

dynamics of the swimming methods. For dynamic modeling and analysis of a 

tiny microrobot, which composed of a spherical head and four helix tail, the 

resistance force theory (RFT) is used to calculate thrust force, required torque, 

linear and angular velocities and then these physical and geometrical 

parameters are used to optimize the microrobot. In addition, a novel design 

method for determining the optimal geometrical parameters of dynamic 

system using the particle swarm optimization (PSO) reinforcement 

evolutionary algorithm is presented. Finally, the dynamical behavior of the 

optimized microrobot are simulated and the results are presented. 
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1. Introduction 
Advances in micro / nano manufacturing technology 

have allowed scientists and engineers to take 

inspiration from locomotion strategies found in nature 

and design artificial swimmers and fluid transport 

systems at small scales. Swimming microrobots are 

mobile, untethered devices that have a typical size in 

the sub millimeter range i.e. from one millimeter down 

to one micrometer [1], and are able to move within a 

liquid medium [2]. The envisioned applications of 

swimming microrobots are mainly found in medicine, 

especially involving navigation in bodily fluids, such 

as blood and cerebrospinal fluid, for the execution of 

vary localized diagnosis or therapy tasks [3]. 

Swimming microrobots typically operated in the low 

Reynolds number regime, where inertia plays a minor 

role with respect to viscous damping. Swimming at 

these scales thus requires mechanisms that are 

substantially different from those employed at the 

macro scale [4]. Therefore designing a swimming 

microrobot is certainly a challenging task. A viable and 

effective way to cope with this issue is to exploit nature 

as a source of inspiration. Microorganisms are indeed 

able to effectively swim at the micro scale by adopting 

different techniques [1]. Bacteria are absolutely the 

most biological models in swimming microrobots. 

Tiny microrobots have been developed that swim by 

means of helical tails resembling bacterial flagella [5-

6]. Inspired by the nature, several propulsion 

mechanisms have been proposed for swimming 

microrobot [7–11]. Whereas macro scale biomimetic 

robots rely on inertial forces for propulsion, 

miniaturization will make them ineffective [7]. In 

another design, an external magnetic field is used to 

rotate a small ferromagnetic screw within the liquid 

[11]. It has been demonstrated that this spiral machine 

can swim in liquids of various viscosities in a broad 

range of Reynolds numbers. However, speed limitation 

is the main deficiency of this machine.  

Some existing approaches to mobile microrobot power 

and control in 3D such as chemically propelled designs 

include the microtubular jet microrobot [12], and the 

electroosmotic swimmer [13], Swimming microrobots 

include the colloidal magnetic swimmer [14], the 

magnetic thin film helical swimmer [15], the micro 

scale magnetic helix fabricated by glancing angle 

deposition [16], the micro helix microrobot with cargo 

carrying cage, fabricated by direct laser writing [17] 

and the micro helix microrobot with magnetic 

head, fabricated as thin film and rolled using residual 
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stress [18], microrobots pulled in 3D using magnetic 

field gradients include the nickel microrobot capable of 

5 DOF motion in 3D using the OctoMag system [19] 

and the MRI powered and imaged magnetic bead [20], 

Bio hybrid approaches include the artificially 

magnetotactic bacteria [21], the chemotactic steering of 

bacteria propelled microbeads [22] and the bacteria 

swarm manipulating micron scale bricks [23].  

This research intends to investigate the potential of 

helix tail propulsion for designing a biomimetic 

swimmers. The dynamic model consists of a spherical 

body and four helical filament. The linear and angular 

swimming velocity of this model was theoretically 

predicted by using resistance force theory.  
 

2. Bionic Design of the Microrobot 
In order to design the microrobot for medical 

applications, the motion mode and the configuration of 

microorganisms have been studied. It is found that the 

microorganisms have a flexible tails and that the 

microorganisms have two swimming modes: one is the 

slender type organism’s undulatory swimming mode 
such as the tadpoles swimming; the other is the 

spinning propulsive mode which is similar to the 

bacteria swimming with flagella. Therefore, we 

propose a novel noninvasive propulsion system 

inspired by bacteria. The microrobot is composed of an 

array of rigid tails and head where the driving motors 

are assembled in microrobot head. 

To increase the thrust of a microrobot propelled by 
flagellar propulsion, we propose using multiple flagella 

in parallel as shown conceptually in Figure 1.  
 

 

 
Figure 1. Conceptual Drawing Of The Interventional 

Swimming Microrobot 
 

Multiple micro scale flagella are proposed to be made 

parallel to each other on a base. Designed microrobot 

is similar the biological analogue, which requires that 

each flagellum be rotated independently. The reasons 

for this are that rotating each flagellum independently 

is more difficult but the maneuver and kinematic 

parameters increased. The whole surface of the 

microrobot is biocompatible. When the flexible tails 

spin in liquid surroundings the thrust force will be 

generated due to the viscous force of the liquid 

applying to the tails. As we unitize the rotation 

direction and speed of the tails, the swimming direction 

will be adjusted easily [24-25].  
 

3. Dynamic Model of the Swimming 

Microrobot  
To develop an appropriate propulsion system, it is 
essential to build the dynamic model of the propulsion 
method. Based upon the application, the miniature 
medical microrobot is designed for and according to the 
maximal diameter of human’s artery, the diameter of 

the microrobot must be less than 3 mm. Since the 

viscosity of plasma is 0.01(𝑁 ∙ 𝑠)/𝑚2, we anticipate 

that the 𝑅𝑒 of the microrobot would be much smaller 

than 1. The fluid flow of this regime is called Stokes 

flow. Main characteristics of Stokes flow are that the 

viscous forces are dominant over the inertial forces, 

and the propulsion depends on the interaction static 

effect between the microrobot and the fluid, and that 

the motion is time independent. So, utilize the 

previously studies on hydrodynamics of the 
microorganisms swimming in Stokes flow regime, the 
dynamic model of the propulsion has been developed. 

As shown in Figure 2, the rigid spinning tail of 
microrobot will be formed as a helical structure which 

is separated from many elements, and the forces 

between the elements and the fluid are called the 

resistance forces. Based on the Resistance Force 
Theory (RFT) given by Gray and Hancock [26-27], the 
normal and tangential components of drag force on 

every element of the slender body are proportional to 

the respective component of the local velocity with 

different proportionality constants, as the 𝑅𝑒 is less 
than 1. 
 

 
 

Fig . 2. The Simplified Model of the Helical Tail Of Microrobot 

 

Resistive force theory states that the normal and 

tangential forces acting on a cylindrical element of 

length 𝑑𝑠 are 
 

𝑑𝑓𝜉 = −𝐶⊥𝑣𝜉𝑑𝑠 (1) 

 

𝑑𝑓𝜂 = −𝐶∥𝑣𝜂𝑑𝑠 (2) 

 

Where 𝑣𝜉 and 𝑣𝜂 are respectively the normal and 

tangential velocities of the element and 𝐶⊥ and 𝐶∥ are 

coefficients of resistance for a flagellum defined as [28] 
 

𝐶⊥ =
4𝜋𝜇

𝑙𝑛 (
0∙18𝜆

𝑑𝑐𝑜𝑠(𝜅)
) +

1

2

 (3) 

2d 2𝐴 

λ 

𝜅 

𝑑𝑓𝜉  𝑑𝑓𝜂 

z 

x 
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𝐶∥ =
2𝜋𝜇

𝑙𝑛 (
0∙18𝜆

𝑑𝑐𝑜𝑠(𝜅)
)

 (4) 
 

 

Here, λ is the flagella helix wavelength, µ is the fluid’s 

dynamic viscosity and 𝑑 is the flagellum wire radius as 

shown in Figure 2. Now, composing �̇� and 𝐴(𝜔 − �̇�) 

in normal and tangential directions, 𝑣𝜉 and 𝑣𝜂 can be 

written in terms of �̇� and 𝐴(𝜔 − �̇�) as 
 

[
𝑣𝜉

𝑣𝜂
] = [

cos (𝜅) −sin (𝜅)
sin (𝜅) cos (𝜅)

]   [
𝐴(𝜔 − �̇�)

�̇�
] 

 

(5) 

 

𝜔 is the angular velocity of the flagellum, �̇�  is the 

swimming speed of the microrobot, �̇� the angular 

velocity of a head, 𝐴 is the individual flagella 

amplitude and 𝜅 is the pitch angle which is defined by 
 

𝜅 = 𝑡𝑎𝑛−1 (
2𝜋𝐴

𝜆
) (6) 

 

 

Substituting Eq. (5) into Eq. (1) and Eq. (2) the normal 

and tangential forces obtain as  
 

[
𝑑𝑓𝜉
𝑑𝑓𝜂

] = [
−𝐶⊥ 0
0 −𝐶∥

] [
cos (𝜅) −sin (𝜅)
sin (𝜅) cos (𝜅)

]  

[
𝐴(𝜔 − �̇�)

�̇�
] 𝑑𝑠 

          

(7) 

 

The length of 𝑑𝑠 element in 𝑥 direction is  
 

𝑑𝑠2 = 𝑑𝑥2 + 𝑑𝑦2 → 𝑑𝑠 =
𝑑𝑥

cos (𝜅)
 (8) 

 

There would be an additional viscous torque acting on 

element 𝑑𝑠 of the tail that results from the fluid reaction 

on the element of the tail. The 𝑥 component of this 

torque is [29] 
 

𝑀𝑆 = 4𝜋𝜇𝑑2�̇�cos (𝜅)  (9) 
 

The force and torque along the 𝑥 direction is derived as 
 

[
𝑑𝑓𝑥
𝑑𝑀𝑥

] = [
cos (𝜅) −sin (𝜅)
Asin (𝜅) Acos (𝜅)

]   [
𝑑𝑓𝜂
𝑑𝑓𝜉

] 

 

(10) 

Substituting Eq. (7) into Eq. (10) the force and torque 

along the 𝑥 direction is derived as 
 

𝑑𝑓𝑥 = −𝐶∥[�̇� cos(𝜅) + 𝐴(𝜔 − �̇�) sin(𝜅)]𝑑𝑥 
 

−𝐶⊥[�̇� sin(𝜅)−𝐴(𝜔 − �̇�) cos(𝜅)]𝑑𝑥 tan (𝜅) 
 

(11) 

𝑑𝑀𝑥 = −𝐴𝐶∥[�̇� cos(𝜅) + 𝐴(𝜔 − �̇�) sin(𝜅)]𝑑𝑥𝑡𝑎𝑛(𝜅) 
 

+𝐴𝐶⊥[�̇� sin(𝜅)−𝐴(𝜔 − �̇�) cos(𝜅)] 

(12) 

 

If the number of the helicon waves formed by the tail 

is n, by integration of Eq. (11), the thrust force of every 

flagellum can be written as 
 

𝐹𝑥 = ∫ 𝑑𝑓𝑥

𝑛𝜆

0

 

 

𝐹𝑥 = −𝑛𝜆𝐶∥[�̇� cos(𝜅) + 𝐴(𝜔 − �̇�) sin(𝜅)] 
 

   −𝑛𝜆𝐶⊥[�̇� sin(𝜅)−𝐴(𝜔 − �̇�) cos(𝜅)]tan (𝜅) 

 

 

 

 

 

 

(13) 

 

By integrating of Eq. (12) the required torque of every 

flagellum can be written as 
 

𝑀𝑥 = ∫ 𝑑𝑀𝑥

𝑛𝜆

0

 

 

𝑀𝑥 = −𝐴𝑛𝜆𝐶∥[�̇� cos(𝜅) 

 

+𝐴(𝜔 − �̇�) sin(𝜅)]𝑡𝑎𝑛(𝜅) 

 
+𝐴𝑛𝜆𝐶⊥[�̇� sin(𝜅)−𝐴(𝜔 − �̇�) cos(𝜅)]       

 

 

 

 

 

 
 

 

 

(14) 

 

The position of the flagella and free body diagram of 

the swimming microrobot are shown in Figure 3.  
 

 

 
 

 

Figure 3. The Arrangement of Flagellum 

 

The equations for conservation of linear and angular 

momentum in the 𝑥 direction can be written as 
 

∑𝑓𝑥.𝑡𝑎𝑖𝑙 − 𝑓𝐻𝑒𝑎𝑑 = 0  (15) 

 

∑𝑀𝑥.𝑡𝑎𝑖𝑙 − 𝑀𝐻𝑒𝑎𝑑 = 0  (16) 

 

If the head of the microrobot is modeled as a sphere, 

𝑓𝐻𝑒𝑎𝑑 and 𝑀𝐻𝑒𝑎𝑑 are calculated as 
 

𝑓𝐻𝑒𝑎𝑑 = 6𝜋𝜇𝑎�̇� 

 
 (17) 

𝑀𝐻𝑒𝑎𝑑 = 8𝜋𝜇𝑎3Ω  (18) 
 

Where Ω is an angular velocity and 𝑎 is the radius of 

the head. Therefore, the equilibrium equations can be 

written as 

y Axis 

z Axis 

S 

S 

𝐹1 𝐹4 

𝐹2 𝐹3 
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∑𝐹𝑖.𝑥 −

4

𝑖=1

6𝜋𝜇𝑎�̇� = 0 

 

(19) 
 

 

∑[𝑀𝑖.𝑥 + 𝑀𝑖.𝑆]

4

𝑖=1

− 8𝜋𝜇𝑎3�̇� = 0 

 

(20) 

 

𝑆

2
[𝐹1.𝑥 + 𝐹4.𝑥] −

𝑆

2
[𝐹2.𝑥 + 𝐹3.𝑥] − 8𝜋𝜇𝑎3�̇� = 0 

 

(21) 

𝑆

2
[𝐹3.𝑥 + 𝐹4.𝑥] −

𝑆

2
[𝐹1.𝑥 + 𝐹2.𝑥] − 8𝜋𝜇𝑎3�̇� = 0 

 

(22) 

 

As shown in Figure 4 the angular velocities about the 

𝑥, 𝑦 and 𝑧 axes are specified as �̇� , �̇� and �̇�, 

respectively. 
 

 
 

 
 

Figure 4. Angular Velocity In Body Coordinates 

 

Substituting Eq. (13), Eq. (14) and Eq. (9) into Eq. (19) 

to Eq. (21) and using mathematical solver the 

propulsion velocity and angular velocities of 

microrobot in body coordinates are obtained as 
 

�̇� =
𝑓(𝐴. 𝑛. 𝑑. 𝜆)

𝑔(𝐴. 𝑛. 𝑑. 𝜆)
∑𝜔𝑖

4

𝑖=1

 

  

(23) 

 

�̇� =
ℎ(𝐴. 𝑛. 𝑑. 𝜆)

𝑔(𝐴. 𝑛. 𝑑. 𝜆)
∑𝜔𝑖

4

𝑖=1

 

  

(24) 

 

�̇� = 𝑟(𝐴. 𝑛. 𝑑. 𝜆)[𝜔1 + 𝜔4 − 𝜔2 − 𝜔3]  (25) 

�̇� = 𝑟(𝐴. 𝑛. 𝑑. 𝜆)[𝜔3 + 𝜔4 − 𝜔1 − 𝜔2]   (26) 
 

The functions defined in Eq. (23) to Eq. (26) are 

derived as 
 

𝑓(𝐴. 𝑛. 𝑑. 𝜆) = 𝐴𝑠𝑖𝑛(𝜅)[𝜆𝑛𝜋𝑑2𝑐𝑜𝑠(𝜅) 

−2𝜋𝜇𝑎3](𝐶⊥ − 𝐶∥) 

 (27) 

 

𝑔(𝐴. 𝑛. 𝑑. 𝜆) = 4[𝐴2𝜆𝑛𝐶⊥𝐶∥𝑠𝑒𝑐
2(𝜅) 

+𝜋𝜇(𝐶∥𝑐𝑜𝑠
2(𝜅)  + 𝐶⊥𝑠𝑖𝑛2(𝜅))(𝜆𝑑2𝑛 − 

2𝑎3sec (𝜅))] 

 

(28) 

ℎ(𝐴. 𝑛. 𝑑. 𝜆) = 𝐴2𝜆𝑛𝐶⊥𝐶∥𝑠𝑒𝑐
2(𝜅) (29) 

 

𝑟(𝐴. 𝑛. 𝑑. 𝜆) =  
𝑆𝐴𝑛𝜆(𝐶⊥ − 𝐶∥)𝑠𝑖𝑛(𝜅)

16𝜋𝜇𝑎3
 

 (30) 

 

The Eq. (23) to Eq. (26) have been developed in body 

coordinates. By defining (𝑋, 𝑌, 𝑍) as inertia 

coordinates therefore transition from body coordinates 

to inertia coordinates performed using Eq. (31). 
 

[
𝐼
𝐽
𝐾
] = (𝑅𝛼)𝑇(𝑅𝛽)

𝑇
(𝑅𝛾)

𝑇
[
𝑖
𝑗
𝑘
] = 𝑅𝑇𝑟𝑎𝑛𝑠 [

𝑖
𝑗
𝑘
] 

 

 

(31) 

The 𝑅𝑇𝑟𝑎𝑛𝑠 is defined as  
 

𝑅𝑇𝑟𝑎𝑛𝑠 = [

𝑐𝛾𝑐𝛽 −𝑠𝛾𝑐𝛼 + 𝑐𝛾𝑠𝛽𝑠𝛼 𝑠𝛾𝑠𝛼 + 𝑐𝛾𝑠𝛽𝑐𝛼
𝑠𝛾𝑐𝛽 𝑐𝛾𝑐𝛼 + 𝑠𝛼𝑠𝛽𝑠𝛾 −𝑐𝛾𝑠𝛼 + 𝑠𝛾𝑠𝛽𝑐𝛼
−𝑠𝛽 𝑐𝛽𝑠𝛼 𝑐𝛽𝑐𝛼

] 

 

 

(32) 

Where 𝑠 = 𝑠𝑖𝑛 and 𝑐 = 𝑐𝑜𝑠. 
 

The linear and angular velocities of microrobot in 

inertia coordinates are obtained as below  
 

�̇� = �̇�cos(𝛾)𝑐𝑜𝑠(𝛽)  (33) 
 

�̇� = �̇�𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽)  (34) 
 

�̇� = −�̇�𝑠𝑖𝑛(𝛾)  (35) 
 

Θ̇ = [cos (𝛾)𝑐𝑜𝑠(𝛽)]�̇� 
 

−[𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠(𝛼) + 𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛼)]�̇� 
 

+[𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛼) − 𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛼)]�̇� 

 (36) 

 

Ψ̇ = [𝑠𝑖𝑛(𝛾)𝑐𝑜𝑠(𝛽)]�̇� 
 

+[𝑐𝑜𝑠(𝛾)𝑐𝑜𝑠(𝛼) − 𝑠𝑖𝑛(𝛼)𝑠𝑖𝑛(𝛽)𝑠𝑖𝑛(𝛾)]�̇� 
 

 +[𝑠𝑖𝑛(𝛾)𝑠𝑖𝑛(𝛽)𝑐𝑜𝑠(𝛼) − 𝑐𝑜𝑠(𝛾)𝑠𝑖𝑛(𝛼)]�̇� 

 

 (37) 

 

Φ̇ = −[𝑠𝑖𝑛(𝛽)]�̇� − [𝑐𝑜𝑠(𝛽)𝑠𝑖𝑛(𝛼)]�̇� 

        +[𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝛼)]�̇� 

 (38) 

 

It should be noted that any change in angular velocity 

(𝜔𝑖) of each flagellum increases or decreases the linear 

and angular velocities of microrobot. For example, 

when the angular velocities of all flagellum are equal, 

the designed microrobot will move on straight line. In 

this case, each of the flagellum generated the same 

force, therefore any torque about the coordinates axes 

will occur. This causes that the microrobot without any 

precession, move in straight line which it is visible in 

equilibrium equations (19) to (21).  
 

4. Dynamic Performance Analysis 
The dynamic properties of the robot varying with the 

characteristic geometrical parameters of the flagellum, 

the force and required torque are analyzed. In the 
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theoretical analysis, the viscosity of fluid is set to 

0.01(𝑁 ∙ 𝑠)/𝑚2, which approaches to the viscosity of 

plasma. Other parameters are chosen according the 

dimensions of living microorganisms. 

In Figure 5, the thrust force and the required torque are 

plotted as a function of the helical amplitude 𝐴 at the 

constants 𝜇 = 0.01
𝑁∙𝑠

𝑚2, 𝑑 = 0.0115𝜇𝑚, 𝑛 = 10, 𝜆 =

0.38𝜇𝑚, 𝜔 = 100
𝑟𝑎𝑑

𝑠
.  

 

 
 

Figure 5. The Thrust Force and the Required Torque of 

Motor As a Function of Amplitude 

 

It shows that as the helical amplitude increases, the 

thrust force and required torque of the motor increase.  

When the helical amplitude is increasing from zero to 

certain value, the thrust force dramatically increase, 

while the increment of required torque is small. When 

the helical amplitude increases over the range, the 

increasing rates of the torque is much higher than thrust 

force. 

In Figure 6, the thrust force and the required torque 
are plotted as a function of the helical wavelength at the 

constants 𝜇 = 0.01
𝑁∙𝑠

𝑚2, 𝑑 = 0.0115𝜇𝑚, 𝑛 = 10, 𝐴 =

0.33𝜇𝑚, 𝜔 = 100
𝑟𝑎𝑑

𝑠
. 

This plot shows that as 𝜆 increases, the thrust force and 

required torque dramatically increase. Increasing rates 

of the thrust force and required torque is equal. When 

the helical wavelength increases over the range, the 

thrust force leads to required torque. 
 

 
 

Figure 6. The Thrust Force and the Required Torque of 

Motor As a Function of Wavelength 

 

In Figure 7, the thrust force and the required torque are 

plotted as a function of the flagellum radius 𝑑 at the 

constants 𝜇 = 0.01
𝑁∙𝑠

𝑚2 ,  𝐴 = 0.33𝜇𝑚 ,  𝑛 = 10 ,  𝜆 =

0.38𝜇𝑚, 𝜔 = 100
𝑟𝑎𝑑

𝑠
. 

 

 
 

Figure 7. The Thrust Force and the Required Torque of 

Motor As a Function of Flagellum Radius 

 

This plot shows that as flagellum radius increases, the 

increasing rate of the thrust force more than the 

required torque. Further flagellum radius increases, the 

increasing rate of the required torque and thrust force 

are approximately constant and leads to certain value. 

In Figure 8, the thrust force and the required torque are 

plotted as a function of the viscosity of fluid at the 

constants  𝐴 = 0.33𝜇𝑚, 𝑑 = 0.0115𝜇𝑚, 𝑛 = 10, 𝜆 =

0.38𝜇𝑚, 𝜔 = 100
𝑟𝑎𝑑

𝑠
. 

 

 
Figure 8. The Thrust Force and the Required Torque of 

Motor as a Function of Viscosity 

 

This plot shows that as the viscosity of fluid increases, 

the thrust force and the required torque increase while 

the graphs slop is constant. The increasing tendencies 

of the thrust force and the required torque are 
coincident.  

In Figure 9, the thrust force and the required torque are 

plotted as a function of angular velocity of the motor  at 

the constants 𝜇 = 0.01
𝑁∙𝑠

𝑚2, 𝐴 = 0.33𝜇𝑚, 𝑑 =

0.0.0115𝜇𝑚, 𝑛 = 10, 𝜆 = 0.38𝜇𝑚.  

This plot shows that as angular velocity increases, the 

thrust force and the required torque are increase. The 

increasing rates of the thrust force and the torque are 

approximately constant. 
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Figure 9. The Thrust Force and the Required Torque of 

Motor As a Function of Angular Velocity  

 

In Figure 10, the thrust force and the required torque 

are plotted as a function of wave number 𝑛 at the 

constants 𝜇 = 0.01
𝑁∙𝑠

𝑚2, 𝑑 = 0.0115𝜇𝑚, 𝐴 =

0.33𝜇𝑚, 𝜆 = 0.38𝜇𝑚, 𝜔 = 100
𝑟𝑎𝑑

𝑠
.  

 

 
 

Figure 10. The Thrust Force and the Required Torque of 

Motor As a Function of Wave Number 

 

This plot shows that as wave number of the tail 

increase, the thrust force and the required torque 

increase. The increasing rates of the thrust force and the 

torque are approximately constant. 
 

5. Particle Swarm Optimization (PSO) 
Kennedy and Eberhart [30] originally proposed the 

PSO algorithm for optimization. PSO is a population 

based search algorithm based on the simulation of the 

social behavior of birds within a flock. Although, this 

algorithm was originally adopted for balancing weights 

in neural networks [31], it soon became a very popular 

global optimizer, mainly in problems in which the 

decision variables are real numbers [32-33]. In PSO, 

particles fly throughout a hyper dimensional search 

space. Changes to the position of the particles within 

the search space are based on the social psychological 

tendency of individuals to emulate the success of other 

individuals. The positions of these particles are 

changed according to their own experience and that of 

their neighbors. Let 𝑥𝑖⃗⃗  ⃗(𝑡) denote the position of a 

particle. The position of 𝑥𝑖⃗⃗  ⃗(𝑡) is changed by adding a 

velocity 𝑣𝑖⃗⃗⃗  (𝑡) to it, i.e.: 
 

𝑥𝑖⃗⃗  ⃗(𝑡 + 1) = 𝑥𝑖⃗⃗  ⃗(𝑡) + 𝑣𝑖⃗⃗⃗  (𝑡 + 1) (39) 

 

The velocity vector reflects the socially exchanged 

information and, in general, is defined in the following 

way: 
 

𝑣𝑖⃗⃗⃗  (𝑡 + 1) = 𝑊𝑣𝑖⃗⃗⃗  (𝑡) + 𝐶1𝑟1 (𝑥 𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖⃗⃗  ⃗(𝑡)) 

+𝐶2𝑟2 (𝑥 𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖⃗⃗  ⃗(𝑡)) 

 

(40) 

Where 𝐶1 is the cognitive learning factor and represents 

the attraction that a particle has toward its own success. 

𝐶2 is the social learning factor and represents the 

attraction that a particle has toward the success of the 

entire swarm. 𝑊 is the inertia weight which is 

employed to control the impact of the previous history 

of velocities on the current velocity of a given particle. 

𝑥 𝑝𝑏𝑒𝑠𝑡𝑖 is the personal best position of the particle 𝑖. 

𝑥 𝑔𝑏𝑒𝑠𝑡𝑖 is the position of the best particle of the entire 

swarm. 𝑟1, 𝑟2 ∈ [0,1]are random values. 

 In addition, throughout the paper a uniform probability 

distribution is assumed for all random parameters. The 

parameter 𝑊 regulates the tradeoff between the global 

and local exploration abilities of the swarm. A large 

inertia weight facilitates the global exploration, while a 

small one tends to facilitate the local exploration. A 

suitable value for the inertia weight balances between 

global and local exploration abilities. Experimental 

results indicate that the linearly decreasing inertia 

weight over the iterations improve the performance of 

PSO [34]. Furthermore, with a large value of 𝐶1 and a 

small value of 𝐶2, particles are allowed to move around 

their personal best position (𝑥 𝑝𝑏𝑒𝑠𝑡𝑖). With a small 

value of 𝐶1 and a large value of 𝐶2, particles converge 

to the best particle of the entire swarm (𝑥 𝑔𝑏𝑒𝑠𝑡𝑖). From 

the results, it was observed that best solutions were 

determined when 𝐶1 is linearly decreased and 𝐶2 is 

linearly increased over the iterations [35]. In this paper 

the inertia weight in first step time is assumption one 

and in other time step is defined as 
 

𝑊(𝑡 + 1) = 𝑊(𝑡) × 𝑤𝑑𝑎𝑚𝑝 
 

(41) 

6. Optimization  
Optimization problem is either single or multi objective 

depending on the number of their objective function. In 

this paper single objective optimization system consists 

of only one objective function prefers to increase the 

efficiency of propulsion microrobot. The objective 

function to be selected to required torque reduced and 

thrust force increase. Objective function is defined as 

below 
 

Γ = Λ𝑀𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 − Υ𝐹𝑇ℎ𝑟𝑢𝑠𝑡 (42) 

 

In Eq. (42) Λ and Υ are two constant that Λ and Υ ∈
[0 1]. The used parameters in PSO algorithm is shown 

in Table 1. The geometrical parameters of microrobot 
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propulsion system is optimized consist of 𝑛, 𝐴, 𝜆 and 

𝑑. 
Table 1. PSO Parameters 

 

Parameters Value 

𝐶1  2 

𝐶2  2 

𝑊  1 

𝑤𝑑𝑎𝑚𝑝  0.99 

 

Optimization results are shown in Table 2 and Table 3. 
 

Table 2. Optimization Results 
 

No. Λ Υ Force 

 (E10-18) 

Moment  

(E10-24) 

1 0.05 0.95 9.29E-06 2.26E-05 

2 0.1 0.9 9.29E-06 2.26E-05 

3 0.15 0.85 8.53E-06 1.79E-05 

4 0.2 0.8 7.19E-06 1.15E-05 

5 0.25 0.75 6.19E-06 8.01E-06 

6 0.3 0.7 5.38E-06 5.84E-06 

7 0.35 0.65 4.67E-06 4.37E-06 

8 0.4 0.6 4.03E-06 3.30E-06 

9 0.45 0.55 3.44E-06 2.49E-06 

10 0.5 0.5 2.86E-06 1.85E-06 

11 0.55 0.45 2.03E-06 1.11E-06 

12 0.6 0.4 1.35E-06 5.99E-07 

13 0.65 0.35 8.80E-07 3.16E-07 

14 0.7 0.3 5.57E-07 1.59E-07 

15 0.75 0.25 3.37E-07 7.49E-08 

16 0.8 0.2 2.24E-07 4.10E-08 

17 0.85 0.15 1.68E-07 2.85E-08 

18 0.9 0.1 9.35E-09 1.64E-09 

19 0.95 0.05 5.87E-09 1.37E-09 
 

Table 3. Optimized Geometrical Parameters 
 

No. 𝜆 (𝜇𝑚) A (𝜇𝑚) Radius 

(𝜇𝑚) 

n 

1 1.000 0.500 0.015 15.000 

2 1.000 0.500 0.015 15.000 

3 1.000 0.456 0.015 15.000 

4 1.000 0.381 0.015 15.000 

5 1.000 0.328 0.015 15.000 

6 1.000 0.286 0.015 15.000 

7 1.000 0.252 0.015 15.000 

8 1.000 0.222 0.015 15.000 

9 1.000 0.195 0.015 15.000 

10 1.000 0.170 0.015 15.000 

11 0.868 0.141 0.013 15.000 

12 0.707 0.115 0.010 15.000 

13 0.571 0.092 0.008 15.000 

14 0.454 0.073 0.006 15.000 

15 0.353 0.057 0.005 15.000 

16 0.289 0.050 0.002 15.000 

17 0.244 0.050 0.001 15.000 

18 0.183 0.050 0.001 1.115 

19 0.102 0.050 0.001 1.314 

 

 

 

Although all values of Table 3 are reasonable solutions  

but as can see the initial rows of Table 2 consist of great 

required torque, are not selected because the supply 

energy is dominated. The end rows consist of small 

thrust. Therefore No. 12 is optimal case and optimized 

geometrical parameters are shown in Table 3. 
 

Table 3. Optimal Geometrical Parameters 
 

Wavelength 

(𝜇𝑚) 

Amplitude 

(𝜇𝑚) 

Radius 

(𝜇𝑚) 

Wave Number 

(𝜇𝑚) 

0.708 0.115 0.0108 15 

 

Figure 11 shows the objective function values (Γ) of 

best global particle versus number of function 

evolution (NFE) for No. 12. As can be seen in Figure 

11 by increasing NFE the objective function values of 

best global particle leads to constant value (−2 ∙ 2 ×
10−10). 
 

 
Figure 11. Best Cost Vs. Number of Function Evolution 

 

7. Dynamic Simulation Results for Optimized 

Microrobot System 
Simulations have been conducted using MATLAB 

software. The flagellum as a circular cylinder is 

characterized by its geometrical and material 

properties. The geometrical parameters of flagellum 

and microrobot values used in the simulation obtained 

from particle swarm optimization algorithm calculated 

in last section and living microorganism. The expressed 

Parameters are  𝐴 = 0.500𝜇𝑚 ,  𝜆 = 0.202𝜇𝑚 ,  𝑑 =

0.060𝜇𝑚 ,  𝑛 = 15 ,   𝜇 = 0.010
𝑁∙𝑠

𝑚2 ,  𝑎 = 1.800𝜇𝑚 

and 𝑆 = 1.000𝜇𝑚. 

When the angular velocity of all flagellums are equal 

and change linearly in time (𝜔𝑖 = 𝑡), the designed 

microrobot will move in straight line (Figure 12). In 

this case, each flagellum generates the same force and 

therefore any torque about coordinates axes occur. This 

causes that the microrobot without any slope move in 

straight line. Figure 13 and Figure 14 show the linear 

velocity and angular velocity of the microrobot. 
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Figure 12. 3D Path of Microrobot 

 

 
Figure 13. Linear Velocity In Inertia Coordinates 

 

 
 

Figure 14. Angular Velocity In Inertia Coordinates 

 

When the angular velocities of lateral flagellums are 

same and other meddle flagellum rotate in opposite 

direction (𝜔1 = 𝜔2 = 𝜔3 ≠ 𝜔4) then produce two 

equal torque about Y and Z axes with opposite signs. 

So the microrobot due to the torque about X axis 

fluctuate in 𝑋 − 𝑌 plane while the microrobot move 

along X direction (Figure 15). Figure 16 and Figure 17 

show the linear and angular velocity of microrobot. 

 

𝑀𝑌 = −𝑀𝑍 (43) 
 

 
 

Figure 15. 3D Path of Microrobot 

 

 
 

Figure 16. Linear Velocity In Inertia Coordinates 

 

 
 

Figure 17. Angular Velocity In Inertia Coordinates 

 

When the angular velocities of flagellums are as 

follows 
 

𝜔1 = 𝜔2 = −𝜔3 = −𝜔4 (44) 
 

Then the torque produced about coordinates axes and 

the linear velocities of microrobot are zero (Figure 19). 

Also the microrobot will not have any specific 

movement (Figure 18). It should be noted that in this 

situation the microrobot can rotate about Z axes (Figure 
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20) which is a key factor in design of microrobot 

maneuvering. 
 

 
 

Figure 18. 3D Path of Microrobot 

 

 
 

Figure 19. Linear Velocity In Inertia Coordinates 

 

 
 

Figure 20. Angular Velocity In Inertia Coordinates 

 

As illustrated in Fig. 21 when the angular velocities of 

flagellum are different, the microrobot is able to 

perform any three dimensional movement and 

maneuver in environment. 

For example, when the angular velocities of flagellums 

are function of time and different with together, 

therefore the microrobot move on complex path. Figure 

22 and Figure 23 show the linear and angular velocities 

of microrobot. 
 

 
 

Figure 21. 3D Path of Microrobot 

 

 
 

Figure 22. Linear Velocity In Inertia Coordinates 

 

 
 

Figure 23 Angular Velocity In Inertia Coordinates 

 

8. Concluding Remarks 
Miniature, safe and energy efficient propulsion 

systems hold the key to mature this technology. In this 

paper, a prototype of microrobot based on the motion 

principle of living microorganisms is presented. Based 

on the RFT, the dynamic model of the swimming 

method has been made so as to analyze the thrust force 

achieved by the spinning flexible helical tails and the 

needed torque of the driving motor theoretically. The 

theoretical analysis indicates the follows: 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 1

6:
42

 +
04

30
 o

n 
T

ue
sd

ay
 A

pr
il 

10
th

 2
01

8 
   

   
   

[ D
O

I: 
10

.2
92

52
/ij

m
t.8

.3
5 

]  

http://ijmt.ir/article-1-575-en.html
http://dx.doi.org/10.29252/ijmt.8.35


Hassan Sayyaadi, Abolfazl Motekallem / Propulsion Design and Optimization of Microrobot Dynamic System Geometrical Parameters Using PSO Algorithm 

 

44 

(1) Although the thrust force and the required torque 

of the driving motor increase the helical amplitude, 

wavelength, the wave number formed by the tails, the 

viscosity of environmental fluid, the rotating speed of 

the driving motor, the degrees of influence are various. 

When the helical amplitude is varied near some certain 

value, the microrobot will gain excellent dynamic 

properties. 

(2) The wavelength formed by the tail, the radius of 
the tail, the amplitude of the tail and the wave number 
formed by the tails are the main factors to affect the 

thrust force. So if we need to adjust the swimming 

velocity of the micro microrobot, it only needs to 

change the values of above parameters. 

(3) The wave number formed by the tail can affect the 

thrust force in some degree but not very dramatically. 

In this paper single objective optimization system 

consists of only one objective function prefers to 

increase the efficiency of propulsion microrobot. In 

order to have the maximum net forward velocity and 

minimize the required energy, the optimal values of the 

flagellum geometrical parameters for this microrobot 

are as follows 
Optimal Geometrical Parameters 

 

Wavelength 

(𝜇𝑚) 

Amplitude 

(𝜇𝑚) 

Radius 

(𝜇𝑚) 

Wave Number 

(𝜇𝑚) 

0.708 0.115 0.0108 15 

 

According to the obtained results with applying 

different angular velocities as inputs, it is observed that 

microrobot designed not only has the ability of three 

dimensional movements but also the kinematic 

parameters of the such microrobot somehow optimized 

which can have applied in medicine and industrial  

applications with complex condition.  
 

9. Selected References  
1- Abbott, J.J., Nagy, Z., Beyeler, F. and Nelson, B.J., 

(2007), Robotics in the small, part I: Microbotics, 

Robotics & Automation Magazine, IEEE, 14(2), p.92-

103. [DOI: 10.1109/MRA.2007.380641] 

2- Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., 

Zhang, L., Dong, L., Kaliakatsos, I.K. and Nelson, B.J., 

(2009), How should microrobots swim? The 

International Journal of Robotics Research, 28(11-12), 

p.1434-1447. [DOI: 10.1109/MRA.2007.380641] 

3- Nelson, B.J., Kaliakatsos, I.K. and Abbott, J.J., 

(2010), Microrobots for minimally invasive medicine, 

Annual Review of Biomedical Engineering, 12(1), 

p.55-85. [DOI: 10.1146/annurev-bioeng-010510-

103409] 

4- Purcell, E.M., (1977), Life at low Reynolds number, 

American Journal of Physics, 45(1), p.3-11. [DOI: 

10.1119/1.10903] 

5- Tottori, S., Zhang, L., Qiu, F., Krawczyk, K.K., 

Franco Obregon, A. and Nelson, B.J., (2012), Magnetic 

helical micro machines: Fabrication, controlled 

swimming and cargo transport, Advanced Materials, 

24(6), p.811-816. [DOI: 10.1002/adma.201103818] 

6- Zhang, L., Abbott, J.J., Dong, L., Kratochvil, B.E., 

Bell, D. and Nelson, B.J, (2009), Artificial bacterial 

flagella: Fabrication and magnetic control. Applied 

Physics Letters, 94(6), p. 064107-3 [DOI: 

10.1063/1.3079655] 

7- Fukuda, T., Kawamoto, A., Arai, F. and Matsuura, 

H., (1994), Mechanism and Swimming Experiment of 

Micro Mobile Robot in Water, Proc. of IEEE 

International Workshop on Micro Electro Mechanical 

Systems (MEMS’94), IEEE, New York, p. 273–278. 

[DOI: 10.1109/ROBOT.1994.351388] 

8- Guo, S., Hasegaw, Y., Fukuda, T. and Asaka, K., 

(2001), Fish Like Underwater Microrobot with Multi 

DOF, Proceedings of 200 International Symposium on 

Micro mechatronics and Human Science, IEEE, 

Nahoya, Japan, p. 63–68. [DOI: 

10.1109/MHS.2001.965223] 

9- Jung, J., Kim, B., Tak, Y. and Park, J., (2003), 

Undulatory Tadpole Robot (Tad Rob) Using Ionic 

Polymer Metal Composite IMPC Actuator, 

Proceedings of 2003 IEEE International Conference on 

Intelligent Robots and Systems, IEEE, New York, p. 

2133–2138. [DOI: 10.1109/IROS.2003.1249186] 

10- Zhang, Y., Wang, Q., Zhang, P., Wang, X. and Mei, 

T., (2004), Dynamic Analysis and Experiment of a 3 

mm Swimming Microrobot, Proceedings of 2004 IEEE 

International Conference on Intelligent Robots and 

Systems, IEEE, New York, p. 1746–1750. [DOI: 

10.1109/IROS.2004.1389648] 

11- Honda, T., Arai, K. and Ishiyama, K., (1999), Effect 

of Micro Machine Shape on Swimming Properties of 

the Spiral Type Magnetic Micro Machine, IEEE Trans. 

Magn., 35, p. 3688–3690. [DOI: 10.1109/20.800632] 

12- Solovev, A. A., Mei, Y., Bermudez Urena, E., 

Huang, G. and Schmidt, O. G., (2009), Catalytic 

microtubular jet engines self propelled by accumulated 

gas bubbles, Small, 5 (14), p. 1688–92. [DOI: 

10.1002/smll.200900021] 

13- Hwang, G., Braive, R., Couraud, L., Cavanna, A., 

Abdelkarim, O., Robert Philip, I., Beveratos, A., 

Sagnes, I., Haliyo, S. and Regnier, S., (2011), 

Electroosmotic propulsion of helical nanobelt 

swimmers, The International Journal of Robotics 

Research, 30(7), p. 806–819. [DOI: 

10.1002/smll.200900021] 

14- Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, 

M., Stone, H. A. and J. Bibette, (2005), Microscopic 

artificial swimmers, Nature, 437(7060), p. 862–865. 

[DOI: 10.1038/nature04090] 

15- Yamazaki, A., Sendoh, M., Ishiyama, K., Ichi Arai, 

K., Kato, R., Nakano, M. and Fukunaga, H., (2004), 

Wireless micro swimming machine with magnetic thin 

film, Journal of Magnetism and Magnetic Materials, 

vol. 272, p. E1741–E1742. [DOI: 

10.1016/j.jmmm.2003.12.337] 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 1

6:
42

 +
04

30
 o

n 
T

ue
sd

ay
 A

pr
il 

10
th

 2
01

8 
   

   
   

[ D
O

I: 
10

.2
92

52
/ij

m
t.8

.3
5 

]  

http://ijmt.ir/article-1-575-en.html
http://dx.doi.org/10.29252/ijmt.8.35


 Hassan Sayyaadi, Abolfazl Motekallem / IJMT 2017, Vol. 8; 35-45  
 

45 

16- Ghosh, A. and Fischer, P., (2009), Controlled 

propulsion of artificial magnetic nanostructured 

propellers, Nano Letters, 9(6), p. 2243–5. [DOI: 

10.1021/nl900186w] 

17- Tottori, S., Zhang, L., Qiu, F., Krawczyk, K. K., 

Franco Obregon, A. and Nelson, B. J., (2012), 

Magnetic helical micromachines: Fabrication, 

controlled swimming, and cargo transport, Advanced 

materials, 24(6), p. 811–816. [DOI: 

10.1002/adma.201103818] 

18- Zhang, L., Abbott, J. J., Dong, L., Peyer, K. E., 

Kratochvil, B. E., Zhang, H., Bergeles, C. and Nelson, 

B. J., (2009), Characterizing the swimming properties 

of artificial bacterial flagella, Nano Letters, 9(10), p. 

3663–7. [DOI: 10.1021/nl901869j] 

19- Kummer, M. P., Abbott, J. J., Kratochvil, B., Borer, 

R., Sengul, A. and Nelson, B. J., (2010), OctoMag: An 

electromagnetic system for 5 DOF wireless 

micromanipulation, IEEE Transactions on Robotics, 

26(6), p. 1006–1017. [DOI: 

10.1109/TRO.2010.2073030] 

20- Martel, S., Felfoul, O., Mathieu, J.-B., Chanu, A., 

Tamaz, S., Mohammadi, M., Mankiewicz, M. and 

Tabatabaei, N., (2009), MRI based medical 

nanorobotics platform for the control of magnetic 

nanoparticles and flagellated bacteria for target 

interventions in human capillaries, The International 

Journal of Robotics Research, 28(9), p. 1169–1182. 

[DOI: 10.1177/0278364908104855] 

21- Hyung Kim, D., Seung Soo Kim, P., Agung Julius, 

A. and Jun Kim, M., (2012 ), Three dimensional 

control of Tetrahymena pyriformis using artificial 

magnetotaxis, Applied Physics Letters, 100(5), p. 

053702. [DOI: 10.1063/1.3678340] 

22- Kim, D. H., Liu, A., Diller, E. and Sitti, M., (2012), 

Chemotactic steering of bacteria propelled 

microbeads, Biomedical Micro devices, 14(6), p. 

1009–1017. [DOI: 10.1007/s10544-012-9701-4] 

23- Martel, S., and Mohammadi, M., (2010), Using a 

swarm of self propelled natural microrobots in the form 

of flagellated bacteria to perform complex micro-

assembly tasks, in International Conference on 

Robotics and Automation, p. 500–505. [DOI: 

10.1109/ROBOT.2010.5509752] 

24- Behkam, B. and Sitti, M., (2006), Design 

methodology for biomimetic propulsion of miniature 

swimming robots, Journal of Dynamic Systems 

Measurement and Control, Vol. 128, p. 36-43. [DOI: 

10.1115/1.2171439] 

25- Behkam, B. and Sitti, M., (2005), Modeling and 

testing of a biomimetic flagellar propulsion method for 

micro scale biomedical swimming robots. Proceedings 

of the IEEE/ASME International Conference on 

Advanced Intelligent Mechatronics, Monterey, USA, 

p. 37-42. [DOI: 10.1109/AIM.2005.1500962] 

26- Brennen, C. and Winet, H., (1977), Fluid 

Mechanics of Propulsion by Cilia and Flagella. Annual 

Review of Fluid Mechanics, Vol. 9, p.339-398. [DOI: 

10.1146/annurev.fl.09.010177.002011] 

27- Gray, J. and Hancock, G., (1955), The propulsion 

of sea urchin spermatozoa, Journal of Experimental 

Biology, Vol. 32, p. 802-814. 

28- Lighthill, J., (1976 ), Flagellar hydrodynamics, 

SIAM Review, vol. 18, p. 161–230. [DOI: 

10.1137/1018040] 

29- Chwang, T., and Wu, T., (1971), A Note on the 

Helical Movement of Microorganisms, Proc. R. Soc. 

London, Ser. B, 178, p. 327–346. [DOI: 

10.1098/rspb.1971.0068] 

30- Kennedy, J. and Eberhart, R.C., (1995), Particle 

swarm optimization, in: Proceedings of the IEEE 

International Conference on Neural Networks IV, p. 

1942–1948. [DOI: 10.1109/ICNN.1995.488968] 

31- Eberhart, R.C., Dobbins, R. and Simpson, P.K., 

(1996), Computational intelligence PC tools, Morgan 

Kaufmann Publishers, Boston. 

32- Engelbrecht, A.P., (2002), Computational 

Intelligence: An Introduction, John Wiley & Sons, 

Chichester. 

33- Engelbrecht, A.P., (2005), Fundamentals of 

Computational Swarm Intelligence, John Wiley & 

Sons, Chichester. 

34- Eberhart, R.C. and Kennedy, J., (1995), a new 

optimizer using particle swarm theory, in: Proceedings 

of the Sixth International Symposium on Micro 

Machine and Human Science, p. 39–43. [DOI: 

10.1109/MHS.1995.494215] 

35- Ratnaweera, A. and Halgamuge, S.K., (2004), Self 

organizing hierarchical particle swarm optimizer with 

time varying acceleration coefficient computation, 

IEEE Transactions on Evolutionary Computation 8 p. 

240–255. [DOI: 10.1109/TEVC.2004.826071] 

 

 

D
ow

nl
oa

de
d 

fr
om

 ij
m

t.i
r 

at
 1

6:
42

 +
04

30
 o

n 
T

ue
sd

ay
 A

pr
il 

10
th

 2
01

8 
   

   
   

[ D
O

I: 
10

.2
92

52
/ij

m
t.8

.3
5 

]  

http://ijmt.ir/article-1-575-en.html
http://dx.doi.org/10.29252/ijmt.8.35

